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Abstract

Lisp is the world’s greatest programming language—or so its proponents think. The
structure of Lisp makes it easy to extend the language or even to implement entirely new
dialects without starting from scratch. Overall, the evolution of Lisp has been guided
more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness
that is characteristic of the “hacker culture” than by sober assessments of technical
requirements. Nevertheless this process has eventually produced both an industrial-
strength programming language, messy but powerful, and a technically pure dialect,
small but powerful, that is suitable for use by programming-language theoreticians.

We pick up where McCarthy’s paper in the first HOPL conference left off. We trace
the development chronologically from the era of the PDP-6, through the heyday of
Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines,
to the present era of standardization activities. We then examine the technical evolution
of a few representative language features, including both some notable successes and
some notable failures, that illuminate design issues that distinguish Lisp from other
programming languages. We also discuss the use of Lisp as a laboratory for designing
other programming languages. We conclude with some reflections on the forces that
have driven the evolution of Lisp.
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1 Introduction

A great deal has happened to Lisp over the last thirty years. We have found it impossible to
treat everything of interest coherently in a single linear pass through the subject, chronologically
or otherwise. Projects and dialects emerge, split, join, and die in complicated ways; the careers
of individual people are woven through these connections in ways that are sometimes parallel but
more often orthogonal. Ideas leap from project to project, from person to person. We have chosen
to present a series of slices through the subject matter. This organization inevitably leads to some
redundancy in the presentation.

Section 2 discusses the history of Lisp in terms of projects and people, from where McCarthy
left off [McCarthy, 1981] up through the efforts to produce official standards for Lisp dialects within
IEEE, ANSI, and ISO. Section 3 examines a number of technical themes and traces separately their
chronological evolution; here the emphasis is on the flow of ideas for each topic. Section 4 traces the
use of Lisp as a language laboratory and implementation tool, especially for the development of AI
languages; particular attention is paid to ways in which feedback from the AI languages influenced
the development of Lisp itself. Section 5 draws some conclusions about why Lisp evolved as it did.

2 Implementation Projects Chronology

Early thoughts about a language that eventually became Lisp started in 1956 when John McCarthy
attended the Dartmouth Summer Research Project on Artificial Intelligence. Actual implementa-
tion began in the fall of 1958. In 1978 McCarthy related the early history of the language [McCarthy,
1981], taking it approximately to just after Lisp 1.5. See also [McCarthy, 1980]. We begin our story
where McCarthy left off.

2.1 From Lisp 1.5 to PDP-6 Lisp: 1960–1965

During this period, Lisp spread rapidly to a variety of computers, either by bootstrapping from
an existing Lisp on another computer or by a new implementation. In almost all cases, the Lisp
dialect was small and simple; the implementation straightforward. There were very few changes
made to the original language.

In the early 1960’s, Timothy Hart and Thomas Evans implemented Lisp 1.5 on the Uni-
vac M 460, a military version of the Univac 490. It was bootstrapped from Lisp 1.5 on the IBM 7090
using a cross-compiler and a small amount of machine language code for the lowest levels of the
Lisp implementation [Hart, 1985].

Robert Saunders and his colleagues at System Development Corporation implemented Lisp 1.5
on the IBM-built AN/FSQ-32/V computer—the Q-32 [Saunders, 1985b]. The implementation was
bootstrapped from the IBM 7090 and PDP-1 computers at Stanford University.

The PDP-1 Lisp at Stanford was implemented by John McCarthy and Steve Russell.
In 1963, L. Peter Deutsch (at that time a high school student) implemented a Lisp similar to

Lisp 1.5 on the PDP-1 at Bolt Beranek and Newman (BBN) [Deutsch, 1985]. This Lisp was called
Basic PDP-1 Lisp.



     

Gabriel and Steele, Evolution of Lisp 3

By 1964 a version of Lisp 1.5 was running in the Electrical Engineering Department at MIT
on an IBM 7094 computer, running the Compatible Time Sharing System (CTSS). This Lisp and
Basic PDP-1 Lisp were the main influences on the PDP-6 Lisp [PDP-6 Lisp, 1967] implemented
by DEC and some members of MIT’s Tech Model Railroad Club in the spring of 1964. This Lisp
was the first program written on the PDP-6. Also, this Lisp was the ancestor of MacLisp, the Lisp
written to run under the Incompatible Time Sharing System (ITS) [Eastlake, 1968; Eastlake, 1972]
at MIT on the PDP-6 and later on the PDP-10.

At BBN a successor to Basic PDP-1 Lisp was implemented on the PDP-1 and an upward-
compatible version, patterned after Lisp 1.5 on the MIT CTSS system, was implemented on the
Scientific Data Systems 940 (SDS 940) by Daniel Bobrow and D. L. Murphy. A further upward-
compatible version was written for the PDP-10 by Alice Hartley and Murphy, and this Lisp was
called BBN Lisp [Teitelman, 1971]. In 1973, not long after the time that SDS was acquired by
Xerox and renamed Xerox Data Systems, the maintenance of BBN Lisp was shared by BBN and
Xerox Palo Alto Research Center and the name of the Lisp was changed to Interlisp [Teitelman,
1974].

The PDP-6 [DEC, 1964] and PDP-10 [DEC, 1969] computers were, by design, especially suited
for Lisp, with 36-bit words and 18-bit addresses. This allowed a CONS cell—a pair of pointers or
addresses—to be stored efficiently in a single word. There were half-word instructions that made
manipulating the CAR and CDR of CONS cells very fast. The PDP-6 and PDP-10 also had fast,
powerful stack instructions, which enabled fast function calling for Lisp.

Almost all of these implementations had a small hand-coded (assembly) core and a compiler;
the rest of the Lisp was written in Lisp and compiled.

In 1965, virtually all of the Lisps in existence were identical or differed only in trivial ways.
After 1965—or more precisely, after MacLisp and BBN Lisp diverged from each other—there came
a plethora of Lisp dialects.

During this period there was little funding for language work, the groups were isolated from
each other, and each group was directed primarily towards serving the needs of a local user group,
which was limited to a handful of researchers. The typical situation is characterized by the de-
scription “an AI lab with a Lisp wizard down the hall”. During this period there was a good
deal of experimentation with implementation strategies. There was little thought of consolidation,
particularly in the form of a formal standards process, partly because of the pioneering feeling that
each lab embodied.

The first real standard Lisps were MacLisp and Interlisp, and as such they deserve some atten-
tion.

2.2 MacLisp

MacLisp was the primary Lisp dialect at the MIT AI Lab from the late 1960’s until the early 1980’s.
Other important Lisp work at the Lab during this period included Lisp-Machine Lisp (later named
Zetalisp) and Scheme. MacLisp is usually identified with the PDP-10 computer, but MacLisp also
ran on another machine, the Honeywell 6180, under the Multics operating system [Organick, 1972].

2.2.1 Early MacLisp

The distinguishing feature of the MacLisp/Interlisp era is the attention to production quality or near
production quality implementations. This period saw a consolidation of implementation techniques,
with great attention to detail.
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A key difference between MacLisp and Interlisp was the approach to syntax. MacLisp favored
the pure list style, using EVAL as the top level. Interlisp, along with Lisp 1.5, used EVALQUOTE.
To create a dotted pair of the atoms a and b in MacLisp, one would type this expression to EVAL:

(cons (quote a) (quote b))

or, using the syntactic abbreviation ’x for (quote x),

(cons ’a ’b)

In Lisp 1.5, one could type an expression (actually two expressions) like this to EVALQUOTE:

cons(a b)

The “quote” in the name EVALQUOTE signifies the “implicit quoting of the arguments” to the
function applied. MacLisp forked off and used EVAL exclusively as a top level interface, while BBN-
Lisp (and thus Interlisp) accommodated both, using EVAL if the input was one form and APPLY if
the input line was two or more forms.

The phrase “quoting arguments” actually is misleading and imprecise. It refers to the actions
of a hypothetical preprocessor that transforms the input from a form like cons(a b) to one like
(cons ’a ’b). A similar misunderstanding carried over into the description of the so-called FEXPR

or “special form”. In some texts on Lisp one will find descriptions of special forms that speak of a
special form “quoting its arguments” when in fact a special form has a special rule for determining
its meaning and that rule involves not evaluating some forms [Pitman, 1980].

McCarthy [McCarthy, 1981] noted that the original Lisp interpreter was regarded as a universal
Turing machine: It could perform any computation given a set of instructions (a function) and
the initial input on its tape (arguments). Thus it was intended that cons(a b) be regarded
not as a mutated version of (cons (quote a) (quote b)), but as a function and (separately) a
literal list of arguments. In hindsight we see that the EVALQUOTE top level might better have been
called the APPLY top level, making it pleasantly symmetrical to the EVAL top level; the BBN-Lisp
documentation brought out this symmetry explicitly. (Indeed, EVALQUOTE would have been identical
to the function APPLY in Lisp 1.5 if not for these two differences: (a) in Lisp 1.5, APPLY took a third
argument, an environment (regarded nowadays as something of a mistake that resulted in dynamic
binding rather than the lexical scoping needed for a faithful reflection of the lambda calculus);
and (b) “EVALQUOTE is capable of handling special forms as a sort of exception” [McCarthy, 1962].
Nowadays such an exception is referred to as a kluge [Raymond, 1991]. (Note that MacLisp’s APPLY
function supported this kluge.)

MacLisp introduced the LEXPR, which is a type of function that takes any number of arguments
and puts them on the stack; the single parameter of the function is bound to the number of
arguments passed. The form of the lambda-list for this argument—a symbol and not a list—signals
the LEXPR case. Here is an example of how to define LIST, a function of a variable number of
arguments that returns the list of those arguments:

(defun LIST n

(do ((i n (1- i))

(answer () (cons (arg i) answer)))

((zerop i) answer)))

Parameter n is bound to the number of arguments passed. The expression (arg i) refers to the
ith argument passed.
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The need for the LEXPR (and its compiled counterpart, the LSUBR) arose from a desire to have
variable arity functions such as +. Though there is no semantic need for an n-ary +, it is convenient
for programmers to be able to write (+ a b c d) rather than the equivalent but more cumbersome
(+ a (+ b (+ c d))).

The simple but powerful macro facility on which DEFMACRO is based was introduced in MacLisp
in the mid-1960’s. See section 3.3.

Other major improvements over Lisp 1.5 were arrays; the modification of simple predicates—
such as MEMBER—to be functions that return useful values; PROG2; and the introduction of the
function ERR, which allowed user code to signal an error.

In Lisp 1.5, certain built-in functions might signal errors, when given incorrect arguments, for
example. Signaling an error normally resulted in program termination or invocation of a debugger.
Lisp 1.5 also had the function ERRSET, which was useful for controlled execution of code that might
cause an error. The special form

(errset form)

evaluates form in a context in which errors do not terminate the program or enter the debugger.
If form does not cause an error, ERRSET returns a singleton list of the value. If execution of form
does cause an error, the ERRSET form quietly returns NIL.

MacLisp added the function ERR, which signals an error. If ERR is invoked within the dynamic
context of an ERRSET form, then the argument to ERR is returned as the value of the ERRSET form.

Programmers soon began to use ERRSET and ERR not to trap and signal errors but for more
general control purposes (dynamic non-local exits). Unfortunately, this use of ERRSET also quietly
trapped unexpected errors, making programs harder to debug. A new pair of primitives, CATCH and
THROW, was introduced into MacLisp in June 1972 so that ERRSET could be reserved for its intended
use of error trapping.

The lesson of ERRSET and CATCH is important. The designers of ERRSET and later ERR had in
mind a particular situation and defined a pair of primitives to address that situation. But because
these facilities provided a combination of useful and powerful capabilities (error trapping plus
dynamic non-local exits), programmers began to use these facilities in unintended ways. Then the
designers had to go back and split the desired functionality into pieces with alternative interfaces.
This pattern of careful design, unintended use, and later redesign is common in the evolution of
Lisp.

The next phase of MacLisp development began when the developers of MacLisp started to see
a large and influential user group emerge—Project MAC and the Mathlab/Macsyma group. The
emphasis turned to satisfying the needs of their user community rather than doing language design
and implementation as such.

2.2.2 Later MacLisp

During the latter part of its lifecycle, MacLisp adopted language features from other Lisp dialects
and from other languages, and some novel things were invented.

The most significant development for MacLisp occurred in the early 1970’s when the techniques
in the “fast arithmetic compiler” LISCOM [Golden, 1970] were incorporated into the MacLisp
compiler. This new compiler, NCOMPLR [Moon, April 1974; White, 1969–1982; Pitman, 1983],
would become a standard against which all other Lisp compilers were measured in terms of the
speed of running code. Inspired by the needs of the MIT Artificial Intelligence Laboratory (AI
Lab), whose needs covered the numeric computations done in vision and robotics, several new ways
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of representing and compiling numeric code resulted in numeric performance of compiled MacLisp
on a near par with FORTRAN compilers [Fateman, 1973].

Bignums—arbitrary precision integer arithmetic—were added in 1970 or 1971 to meet the needs
of Macsyma users. The code was a more or less faithful transcription of the algorithms in [Knuth,
1969]. Later Bill Gosper suggested some improvements, notably a version of GCD that combined the
good features of the binary GCD algorithm with Lehmer’s method for speeding up integer bignum
division [Knuth, 1981, ex. 4.5.2-34].

In 1973 and 1974, David Moon led an effort to implement MacLisp on the Honeywell 6180
under Multics. As a part of this project he wrote the first truly comprehensive reference manual
for Maclisp, which became familiarly known as the “Moonual” [Moon, April 1974].

Richard Greenblatt started the MIT Lisp Machine project in 1974; David Moon, Richard Stall-
man, and many other MIT AI Lab Lisp hackers eventually joined this project. As this project
progressed, language features were selectively retrofitted into PDP-10 MacLisp as the two projects
cross-fertilized.

Complex lambda lists partly arose by influence from MDL [Galley, 1975], which was a language
for the Dynamic Modeling Group at MIT. It ran on a PDP-10 located in the same machine room
as the AI and Mathlab machines. The austere syntax of Lisp 1.5 was not quite powerful enough
to express clearly the different roles of arguments to a function. Complex lambda-lists appeared as
a solution to this problem and became widely accepted; eventually they terribly complicated the
otherwise elegant Common Lisp Object System.

MacLisp introduced the notion of read tables. A read table provides programmable input syntax
for programs and data. When a character is input, the table is consulted to determine the syntactic
characteristics of the character for use in putting together tokens. For example, the table is used
to determine which characters denote whitespace. In addition, functions can be associated with
characters, so that a function is invoked whenever a given character is read; the function can read
further input before returning a value to be incorporated into the data structure being read. In
this way the built-in parser can be reprogrammed by the user. This powerful facility made it easy
to experiment with alternative input syntaxes for Lisp, ranging from such simple abbreviations as
’x for (quote x) to the backquote facility and elaborate Algol-style parsers. See section 3.5.1 for
further discussion of some of these experiments.

MacLisp adopted only a small number of features from other Lisp dialects. In 1974, about
a dozen persons attended a meeting at MIT between the MacLisp and Interlisp implementors,
including Warren Teitelman, Alice Hartley, Jon L White, Jeff Golden, and Guy Steele. There was
some hope of finding substantial common ground, but the meeting actually served to illustrate
the great chasm separating the two groups, in everything from implementation details to overall
design philosophy. (Much of the unwillingness of each side to depart from its chosen strategy
probably stemmed from the already severe resource constraints on the PDP-10, a one-megabyte,
one-MIPS machine. With the advent of the MIT Lisp Machines, with their greater speed and much
greater address space, the crowd that had once advocated a small, powerful execution environment
with separate programming tools embraced the strategy of writing programming tools in Lisp and
turning the Lisp environment into a complete programming environment.) In the end only a trivial
exchange of features resulted from “the great MacLisp/Interlisp summit”: MacLisp adopted from
Interlisp the behavior (CAR NIL)→ NIL and (CDR NIL)→ NIL, and Interlisp adopted the concept
of a read table.

By the mid-1970’s it was becoming increasingly apparent that the address space limitation of
the PDP-10—256k 36-bit words, or about one megabyte—was becoming a severe constraint as the
size of Lisp programs grew. MacLisp by this time had enjoyed nearly 10 years of strong use and
acceptance within its somewhat small but very influential user community. Its implementation
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strategy of a large assembly language core would prove to be too much to stay with the dialect as
it stood, and intellectual pressures from other dialects, other languages, and the language design
aspirations of its implementors would result in new directions for Lisp.

To many, the period of stable MacLisp use was a golden era in which all was right with the
world of Lisp. (This same period is also regarded today by many nostalgics as the golden era of
Artificial Intelligence.) By 1980 the MacLisp user community was on the decline—the funding for
Macsyma would not last too long. Various funding crises in AI had depleted the ranks of the AI
Lab Lisp wizards, and the core group of wizards from MIT and MIT hangers-on moved to new
institutions.

2.3 Interlisp

Interlisp (and BBN-Lisp before it) introduced many radical ideas into Lisp programming style and
methodology. The most visible of these ideas are embodied in programming tools, such as the
spelling corrector, the file package, DWIM, CLISP, the structure editor, and MASTERSCOPE.

The origin of these ideas can be found in Warren Teitelman’s PhD dissertation on man-computer
symbiosis [Teitelman, 1966]. In particular, it contains the roots of structure editing (as opposed to
“text” or “tape” editing [Rudloe, 1962]), breakpointing, advice, and CLISP. (William Henneman
in 1964 described a translator for the A-language [Henneman, 1985], an English-like or Algol-
like surface syntax for Lisp (see section 3.5.1), but it was not nearly as elaborate or as flexible as
CLISP. Henneman’s work does not appear to have directly influenced Teitelman; at least, Teitelman
does not cite it, though he cites other papers in the same collection containing Henneman’s paper
[Berkeley, 1985].)

The spelling corrector and DWIM were designed to compensate for human foibles. When a
symbol had no value (or no function definition), the Interlisp spelling corrector [Teitelman, 1974]
was invoked, because the symbol might have been misspelled. The spelling corrector compared
a possibly misspelled symbol with a list of known words. The user had options for controlling
the behavior of the system with respect to spelling correction. The system would do one of three
things: (a) correct automatically; (b) pause and ask whether a proposed correction were acceptable;
or (c) simply signal an error.

The spelling corrector was under the general control of a much larger program, called DWIM,
for “Do What I Mean”. Whenever an error of any sort was detected by the Interlisp system,
DWIM was invoked to determine the appropriate action. DWIM was able to correct some forms
of parenthesis errors, which, along with the misspelling of identifiers, comprised the most common
typographical errors by users.

DWIM worked well with the work philosophy of Interlisp. The Interlisp model was to emulate
an infinite login session. In Interlisp the programmer worked with source presented by a structure
editor. Any changes to it were saved in a file, which served as a persistent repository for the
programmer’s code. DWIM’s changes were saved also. (The MacLisp model, in contrast, was for
the programmer to work with ASCII files that represented the program.)

CLISP (Conversational LISP) was a mixed Algol-like and English-like syntax embedded within
normal Interlisp syntax. Here is a valid definition of FACTORIAL written in Interlisp CLISP syntax:

DEFINEQ((FACTORIAL

(LAMBDA (N) (IF N=0 THEN 1 ELSE N*(FACTORIAL N-1)))))

CLISP also depended on the generic DWIM mechanism. Note that it not only must, in effect,
rearrange tokens and insert parentheses, but also must split atoms such as N=0 and N* into several
appropriate tokens. Thus the user need not put spaces around infix operators.
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CLISP defined a useful set of iteration constructs. Here is a simple program to print all the
prime numbers p in the range m ≤ p ≤ n:

(FOR P FROM M TO N DO (PRINT P) WHILE (PRIMEP P))

CLISP, DWIM, and the spelling corrector could work together to recognize the following as a
valid definition of FACTORIAL [Teitelman, 1973]:

DEFINEQ((FACTORIAL

(LAMBDA (N) (IFFN=0 THENN 1 ESLE N*8FACTTORIALNN-1))))

Interlisp eventually “corrects” this mangled definition into the valid form shown previously. Note
that shift-8 is left parenthesis on the Model 33 teletype, which had a bit-paired keyboard. DWIM
had to be changed when typewriter-paired keyboards (on which left parenthesis was shift-9, and
shift-8 was the asterisk) became common.

MASTERSCOPE was a facility for finding out information about the functions in a large
system. MASTERSCOPE could analyze a body of code, build up a data base, and answer questions
interactively. MASTERSCOPE kept track of such relationships as which functions called which
others (directly or indirectly), which variables were bound where, which functions destructively
altered certain data structures, and so on. (MacLisp had a corresponding utility called INDEX,
but it was not nearly as general or flexible, and it ran only in batch mode, producing a file containing
a completely cross-indexed report.)

Interlisp introduced the concept of block compilation, in which multiple functions are compiled
as a single block; this resulted in faster function calling than would otherwise have been possible
in Interlisp.

Interlisp ran on PDP-10’s, Vaxen (plural of Vax [Raymond, 1991]), and a variety of special-
purpose Lisp machines developed by Xerox and BBN. The most commonly available Interlisp
machines were the Dolphin, the Dorado, and the Dandelion (collectively known as D-machines).
The Dorado was the fastest of the three, and the Dandelion the most commonly used. It is
interesting that different Interlisp implementations used different techniques for handling special
variables: Interlisp-10 (for the PDP-10) used shallow binding, while Interlisp-D (for D-machines)
used deep binding. These two implementation techniques exhibit different performance profiles—a
program with a certain run time under one regime could take 10 times longer under the other.

This situation of unexpected performance is prevalent with Lisp. One can argue that program-
mers produce efficient code in a language only when they understand the implementation. With
C, the implementation is straightforward because C operations are in close correspondence to the
machine operations on a Von Neumann architecture computer. With Lisp, the implementation is
not straightforward, but depends on a complex set of implementation techniques and choices. A
programmer would need to be familiar not only with the techniques selected, but the performance
ramifications of using those techniques. It is little wonder that good Lisp programmers are harder
to find than good C programmers.

Like MacLisp, Interlisp extended the function calling mechanisms in Lisp 1.5 with respect to
how arguments can be passed to a function. Interlisp function definitions specified arguments as
the cross product of two attributes: LAMBDA versus NLAMBDA, and spread versus nospread.

LAMBDA functions evaluate each of their arguments; NLAMBDA functions evaluate none of their
arguments (that is, the unevaluated argument subforms of the call are passed as the arguments).
Spread functions require a fixed number of arguments; nospread functions accept a variable number.
These two attributes were not quite orthogonal, because the parameter of a nospread NLAMBDA was
bound to a list of the unevaluated argument forms, whereas the parameter of a nospread LAMBDA
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was bound to the number of arguments passed and the ARG function was used to retrieve actual
argument values. There was thus a close correspondence between the mechanisms of Interlisp and
MacLisp:

Interlisp MacLisp

LAMBDA spread EXPR

LAMBDA nospread LEXPR

NLAMBDA spread no equivalent
NLAMBDA nospread FEXPR

There was another important difference here between MacLisp and Interlisp, however. In
MacLisp, “fixed number of arguments” had a quite rigid meaning; a function accepting three argu-
ments must be called with exactly three arguments, neither more nor less. In Interlisp, any function
could legitimately be called with any number of arguments; excess argument forms were evaluated
and their values discarded, and missing argument values were defaulted to NIL. This was one of
the principal irreconcilable differences separating the two sides at their 1974 summit. Thereafter
MacLisp partisans derided Interlisp as undisciplined and error-prone, while Interlisp fans thought
MacLisp awkward and inflexible, for they had the convenience of optional arguments, which did
not come to MacLisp until &optional and other complex lambda-list syntax was retrofitted, late
in the game, from Lisp-Machine Lisp.

One of the most innovative of the language extensions introduced by Interlisp was the spaghetti
stack [Bobrow, 1973]. The problem of retention (by closures) of the dynamic function-definition
environment in the presence of special variables was never completely solved until spaghetti stacks
were invented.

The idea behind spaghetti stacks is to generalize the structure of stacks to be more like a
tree, with various branches of the tree subject to retention whenever a pointer to that branch is
retained. That is, parts of the stack are subject to the same garbage collection policies as are other
Lisp objects. Unlike closures, the retained environment captures both the control environment and
the binding environment.

One of the minor, but interesting, syntactic extensions that Interlisp made was the introduction
of the superparenthesis, or superbracket. If a right square bracket ] is encountered during a read
operation, it balances all outstanding open left parentheses, or back to the last outstanding left
square bracket [. Here is a simple example of this syntax:

DEFINEQ((FACTORIAL

(LAMBDA (N)

(COND [(ZEROP N) 1]

(T (TIMES N (FACTORIAL (SUB1 N]

MacLisp and Interlisp came into existence about the same time and lasted about as long as
each other. They differed in their user groups, though any generic description of the two groups
would not distinguish them: both groups were researchers at AI labs funded primarily by ARPA
(later DARPA), and these researchers were educated by MIT, CMU, and Stanford. The principal
implementations ran on the same machines, and one had cachet as the Lisp with the nice envi-
ronment while the other was the lean, mean, high-powered Lisp. The primary differences came
from different philosophical approaches to the problem of programming. There were also different
pressures from their user groups; MacLisp users, particularly the Mathlab group, were willing to
use a less integrated programming environment in exchange for a good optimizing compiler and
having a large fraction of the PDP-10 address space left free for their own use. Interlisp users
preferred to concentrate on the task of coding by using a full, integrated development environment.
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2.4 The Early 1970’s

Though MacLisp and Interlisp dominated the 1970’s, there were several other major Lisp dialects in
use during this period. Most were more similar to MacLisp than to Interlisp. The two most widely
used dialects were Standard Lisp [Marti, 1979] and Portable Standard Lisp [Group, 1982]. Standard
Lisp was defined by Anthony Hearn and Martin Griss, along with their students and colleagues.
The motivation was to define a subset of Lisp 1.5 and other Lisp dialects that could serve as a
medium for porting Lisp programs, most particularly the symbolic algebra system REDUCE.

Later Hearn and his colleagues discovered that for good performance they needed more control
over the environment and the compiler, and Portable Standard Lisp (PSL) was born. Standard
Lisp attempted to piggyback on existing Lisps, while PSL was a complete, new Lisp implementation
with a retargetable compiler [Griss, 1981], an important pioneering effort in the evolution of Lisp
compilation technology. By the end of the 1970’s, PSL ran on more than a dozen different types of
computers.

PSL was implemented using two techniques. First, it used a system implementation language
called SYSLISP, which was used to code operations on raw, untyped representations. Second, it
used a parameterized set of assembly-level translation macros called c-macros. The Portable Lisp
Compiler (PLC) compiled Lisp code into an abstract assembly language. This language was then
converted to a machine-dependent LAP (Lisp Assembly Program) format by pattern-matching the
c-macro descriptions with the abstract instructions in context. For example, different machine
instructions might be selected depending on the sources of the operands and the destination of the
result of the operation.

In the latter half of the 1970’s and on into the mid-1980’s, the PSL environment was improved
by adapting editors and other tools. In particular, a good multiwindow Emacs-like editor called
Emode was developed that allowed fairly intelligent editing and the passing of information back
and forth between the Lisp and the editor. Later, a more extensive version of Emode called Nmode
was developed by Martin Griss and his colleagues at Hewlett-Packard in Palo Alto, California. This
version of PSL and Nmode was commercialized by HP in the mid-1980’s.

At Stanford in the 1960’s, an early version of MacLisp was adapted to the PDP-6; this Lisp
was called Lisp 1.6 [Quam, 1972]. The early adaptation was rewritten by John Allen and Lynn
Quam; later compiler improvements were made by Whit Diffie. Lisp 1.6 disappeared during the
mid-1970’s, one of the last remnants of the Lisp 1.5 era.

UCI Lisp [Bobrow, 1972] was an extended version of Lisp 1.6 in which an Interlisp style editor
and other programming environment improvements were made. UCI Lisp was used by some folks
at Stanford during the early to mid-1970’s, as well as at other institutions.

In 1976 the MIT version of MacLisp was ported to the WAITS operating system by Richard
Gabriel at the Stanford AI Laboratory (SAIL), which was directed at that time by John McCarthy.

2.5 The Demise of the PDP-10

By the middle of the 1970’s it became apparent that the 18-bit address space of the PDP-10 would
not provide enough working space for AI programs. The PDP-10 line of computers (KL-10’s and
DEC-20’s) was altered to permit an extended addressing scheme, in which multiple 18-bit address
spaces could be addressed by indexing relative to 30-bit base registers.

However, this addition was not a smooth expansion to the architecture as far as the Lisp
implementor was concerned; the change from two pointers per word to only one pointer per word
required a complete redesign of nearly all internal data structures. Only two Lisps were implemented
for extended addressing: ELISP by Charles Hedrick at Rutgers and PSL.
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One response to the address space problem was to construct special-purpose Lisp machines (see
section 2.6). The other response was to use commercial computers with larger address spaces; the
first of these was the VAX [DEC, 1981].

Vaxen presented both opportunities and problems for Lisp implementors. The VAX instruction
set provided some good opportunities for implementing the low level Lisp primitives efficiently,
though it required clever—perhaps too clever—design of the data structures. However, Lisp func-
tion calls could not be accurately modeled with the VAX function-call instructions. Moreover, the
VAX, despite its theoretically large address space, was apparently designed for use by many small
programs, not several large ones. Page tables occupied too large a fraction of memory, and paging
overhead for large Lisp programs was a problem never fully solved on the VAX. Finally, there was
the problem of prior investment; more than one major Lisp implementation at the time had a large
assembly-language base that was difficult to port.

The primary Vax Lisp dialects developed in the late 1970’s were VAX Interlisp, PSL (ported to
the VAX), Franz Lisp, and NIL.

Franz Lisp [Foderaro, 1982] was written to enable research on symbolic algebra to continue at
the University of California at Berkeley, under the supervision of Richard J. Fateman, who was one
of the principal implementors of Macsyma at MIT. Fateman and his students started with a PDP-
11 version of Lisp written at Harvard, and extended it into a MacLisp-like Lisp that eventually ran
on virtually all Unix-based computers, thanks to the fact that Franz Lisp is written almost entirely
in C.

NIL [Burke, 1983], intended to be the successor to MacLisp, was designed by Jon L White (sic),
Guy L. Steele Jr., and others at MIT, under the influence of Lisp-Machine Lisp, also developed at
MIT. Its name was a too-cute acronym for “New Implementation of Lisp” and caused a certain
amount of confusion. NIL was a large Lisp, and efficiency concerns were paramount in the minds
of its MacLisp-oriented implementors; soon its implementation was centered around a large VAX
assembly-language base.

Jon L White was commonly known as “Jonl”, which can be pronounced as either “jónnell” like
“O’Donnell” or “john-ell”. Because of this, his name is usually written “Jon L White” rather than
the correct “John L. White.”

In 1978, Gabriel and Guy Steele set out to implement NIL [Brooks, 1982a] on the S-1 Mark IIA, a
supercomputer being designed and built by the Lawrence Livermore National Laboratory [Correll,
1979; Hailpern, 1979]. This Lisp was never completely functional, but served as a testbed for
adapting advanced compiler techniques to Lisp implementation. In particular, the work generalized
the numerical computation techniques of the MacLisp compiler and unified them with mainstream
register allocation strategies [Brooks, 1982b].

In France in the mid-1970’s, Greussay [Greussay, 1977] developed an interpreter-based Lisp
called Vlisp. At the level of the base dialect of Interlisp, it introduced a couple of interesting
concepts, such as the chronology, which is a sort of dynamic environment for implementing in-
terrupts and environmental functions like trace and step, by creating different incarnations of
the evaluator. Vlisp’s emphasis was on having a fast interpreter. The concept was to provide a
virtual machine that was used to transport the evaluator. This virtual machine was at the level
of assembly language and was designed for easy porting and efficient execution. The interpreter
got a significant part of its speed from two things: a fast function dispatch using a function type
space that distinguished a number of functions of different arity, and tail recursion removal. (Vlisp
was probably the first production quality Lisp to support general tail recursion removal. Other
dialects of the time, including MacLisp, did tail recursion removal in certain situations only, in a
manner not guaranteed predictable.) Vlisp was the precursor to Le Lisp, one of the important Lisp
dialects in France and Europe during the 1980’s; though the dialects were different, they shared
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some implementation techniques.
At the end of the 1970’s, no new commercial machines suitable for Lisp were on the horizon;

it appeared that the Vax was all there was. Despite years of valiant support by Glenn Burke, Vax
NIL never achieved widespread acceptance. Interlisp/VAX was a performance disaster. “General-
purpose” workstations (i.e., those intended or designed to run languages other than Lisp) and
personal computers hadn’t quite appeared yet. To most Lisp implementors and users, the commer-
cial hardware situation looked quite bleak.

But from 1974 onward there had been research and prototyping projects for Lisp machines, and
at the end of the decade it appeared that Lisp machines were the wave of the future.

2.6 Lisp Machines

Though ideas for a Lisp machine had been informally discussed before, Peter Deutsch seems to
have published the first concrete proposal [Deutsch, 1973]. Deutsch outlined the basic vision of a
single-user minicomputer-class machine that would be specially microcoded to run Lisp and support
a Lisp development environment. The two key ideas from Deutsch’s paper that have had a lasting
impact on Lisp are (1) the duality of load and store access based on functions and (2) the compact
representation of linear lists through CDR-coding.

All Lisp dialects up to that time had one function CAR to read the first component of a dotted
pair and a nominally unrelated function RPLACA to write that same component. Deutsch proposed
that functions like CAR should have both a “load” mode and a “store” mode. If (f a1 . . . an) is
called in load mode, it should return a value; if called in store mode, as in (f a1 . . . an v), the
new value v should be stored in the location that would be accessed by the load version. Deutsch
indicated that there should be two internal functions associated with every accessor function, one
for loading and one for storing, and that the store function should be called when the function
is mentioned in a particular set of special forms. However, his syntax is suggestive; here is the
proposed definition of RPLACA:

(lambda (x y) (setfq (car x) y))

Deutsch commented that the special form used here is called SETFQ because “it quotes the function
and evaluates everything else.” This name was abbreviated to SETF in Lisp-Machine Lisp. Deutsch
attributed the idea of dual functions to Alan Kay.

2.6.1 MIT Lisp Machines: 1974–1978

Richard Greenblatt started the MIT Lisp Machine project in 1974; his proposal [Greenblatt, 1974]
cites the Deutsch paper. The project also included Thomas Knight, Jack Holloway, and Pitts Jarvis.
The machine they designed was called CONS, and its design was based on ideas from the Xerox
PARC ALTO microprocessor, the DEC PDP-11/40, the PDP-11/40 extensions done by CMU, and
some ideas on instruction modification suggested by Sam Fuller at DEC.

This machine was designed to have good performance while supporting a version of Lisp
upwards-compatible with MacLisp but augmented with “Muddle-Conniver” argument declaration
syntax. Its other goals included non-prohibitive cost (less than $70,000 per machine), single user
operation, common target language along with standardization of procedure calls, a factor of three
better storage efficiency than the PDP-10 for compiled programs, hardware support for type check-
ing and garbage collection, a largely Lisp-coded implementation (less reliance on assembly language
or other low-level implementation language), and an improved programming environment exploiting
large, bit-mapped displays.
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The CONS machine was built; then a subsequent improved version named the CADR was de-
signed and some dozens of them were built. These became the computational mainstay within the
MIT AI Lab, and it seemed sensible to spin off a company to commercialize this machine. Be-
cause of disagreements among the principals, however, two companies were formed: Lisp Machines
Incorporated (LMI) and Symbolics. Initially each manufactured CADR clones. Soon thereafter
Symbolics introduced its 3600 line, which became the industry leader in Lisp machine performance
for the next 5 years.

While Greenblatt had paid particular care to providing hardware mechanisms to support fast
garbage collection, the early MIT Lisp Machines in fact did not implement a garbage collector for
quite some years; or rather, even when the garbage collector appeared, users preferred to disable
it. Most of the programming tools (notably the compiler and program text editor) were designed
to avoid consing and to explicitly reclaim temporary data structures whenever possible; given this,
the Lisp Machine address spaces were large enough, and the virtual memory system good enough,
that a user could run for several days or even a few weeks before having to save out the running
“world” to disk and restart it. Such copying back and forth to disk was equivalent to a slow,
manually triggered copying garbage collector. (While there was a great deal of theoretical work on
interleaved and concurrent garbage collection during the 1970’s [?; ?; Baker, 1978; ?], continuous
garbage collection was not universally accepted until David Moon’s invention of ephemeral garbage
collection and its implementation on Lisp Machines [Moon, 1984]. Ephemeral garbage collection
was subsequently adapted for use on stock hardware.)

The early MIT Lisp-Machine Lisp dialect [Weinreb, November 1978] was very similar to
MacLisp. It lived up to its stated goal of supporting MacLisp programs with only minimal porting
effort. The most important extensions beyond MacLisp included:

• An improved programming environment, consisting primarily of a resident compiler, debug-
ging facilities, and a text editor. While this brought Lisp-Machine Lisp closer to the Interlisp
ideal of a completely Lisp-based programming environment, it was still firmly file-oriented.
The text editor was an EMACS clone, first called EINE (EINE Is Not EMACS) and then
ZWEI (ZWEI Was EINE Initially), the recursive acronyms of course being doubly delicious
as version numbers in German.

• Complex lambda lists, including &optional, &key, &rest, and &aux

• Locatives, which provided a C-like ability to point into the middle of a structure

• DEFMACRO, a much more convenient macro definition facility (see section 3.3)

• Backquote, a syntax for constructing data structures by filling in a template

• Stack groups, which provided a coroutine facility

• Multiple values, the ability to pass more than one value back from a function invocation
without having to construct a list. Prior to this various ad hoc techniques had been used;
Lisp-Machine Lisp was the first dialect of Lisp to provide primitives for it. (Other languages
such as POP-2 have also provided for multiple values.)

• DEFSTRUCT, a record structure definition facility (compare the Interlisp record package)

• Closures over special variables. These closures were not like the ones in Scheme; the variables
captured by the environment must be explicitly listed by the programmer and invocation of
the closure required the binding of SPECIAL variables to the saved values.

• Flavors, an object-oriented, non-hierarchical programming system with multiple inheritance,
was designed by Howard Cannon and David A. Moon and integrated into parts of the Lisp
Machine programming environment (the window system, in particular, was written using
Flavors [Weinreb, March 1981]).
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• SETF, a facility for generalized variables

The use of SETF throughout Common Lisp—a later and the most popular dialect of Lisp—can
be traced through Symbolics Zetalisp and MacLisp to the influence of MIT Lisp-Machine Lisp and
then back through Greenblatt’s proposal to Peter Deutsch and thence to Alan Kay.

The uniform treatment of access—reading and writing of state—has made Common Lisp more
uniform that it might otherwise be. It is no longer necessary to remember both a reader function
(such as CAR) and also a separate writer or update function (such as RPLACA), nor to remember the
order of arguments (for RPLACA, which comes first, the dotted pair or the new value for its car?).
If the general form of a read operation is (f . . . ), then the form of the write is (setf (f . . . )
newvalue), and that is all the programmer needs to know about reading and writing data.

In CLOS, this idea was extended to methods. If there is a method M that is specified to act as
a reader and is invoked as (M object), then it is possible to define a writer method that is invoked
as (setf (M object) newvalue).

That CLOS fits this idiom so well is no surprise. If Alan Kay was the inspiration for the idea
around 1973, he was in the midst of his early Smalltalk involvement. Reading and writing are both
methods that an object can support, and the CLOS adaptation of the Lisp version of Kay’s vision
was a simple reinvention of the object-oriented genesis of the idea.

2.6.2 Xerox Lisp Machines: 1973–1980

The Alto was a microcodable machine developed in 1973 [Thacker, 1982] and used for personal
computing experimentation at Xerox, using Interlisp and other languages such as Mesa [Geschke,
1977]. The Alto version of the Interlisp environment first went into use at PARC and at Stanford
University around 1975.

The Alto was standardly equipped with 64K 16-bit words of memory, expandable up to 256K
words, which was quite large for a single-user computer but still only half the memory of a PDP-10.
The machine proved to be underpowered for the large Interlisp environment, even with all the code
density tricks discussed by Deutsch in [Deutsch, 1973], so it was not widely accepted by users.

The Alto was also used to build the first Smalltalk environment—the “interim Dynabook”—and
here it was relatively successful.

In 1976, Xerox Parc began the design of a machine called the Dorado (or Xerox 1132), which
was an ECL (Emitter Coupled Logic, an at-the-time fast digital logic implementation technology)
machine designed to replace the Alto. A prototype available in 1978 ran all Alto software. A
redesign was completed in 1979 and a number of them were built for use within Xerox and at
certain experimental sites such as Stanford University. The Dorado was specifically designed to
interpret byte codes produced by compilers, and this is how the Dorado ran Alto software. The
Dorado was basically an emulation machine.

Interlisp was ported to this machine using the Interlisp virtual machine model [Moore, 1976].
The Dorado running Interlisp was faster than a KL-10 running single-user Interlisp, and it would
have proved a very nice Lisp machine if it had been made widely available commercially.

Interlisp was similarly ported to a smaller, cheaper machine called the Dolphin (1100), which was
made commercially available as a Lisp machine in the late 1970’s. The performance of the Dolphin
was better than that of the Alto, but bad enough that the machine was never truly successful as a
Lisp engine.

In the early 1980’s, Xerox built another machine called the Dandelion (1108), which was con-
siderably faster than the Dolphin but still not as fast as the Dorado. Because the names of these
three machines all began with the letter “D”, they became collectively known as the “D-machines.”
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All the Xerox Lisp machines used a reference-count garbage collector [Deutsch, 1976] that was
incremental: a few steps of the garbage collection process would execute each time storage was
allocated. Therefore there was a short, bounded amount of work done for garbage collection per
unit time.

In the late 1970’s BBN also built a machine, the Jericho, that was used as an Interlisp engine.
It remained internal to BBN.

Comments on Early Lisp Machine History

Freed from the address-space constraints of previous architectures, all the Lisp machine companies
produced greatly expanded Lisp implementations, adding graphics, windowing capabilities, and
mouse interaction capabilities to their programming environments. The Lisp language itself, par-
ticularly on the MIT Lisp Machines, also grew in the number and complexity of features. Though
some of these ideas originated elsewhere, their adoption throughout the Lisp community was driven
as much by the success and cachet of the Lisp machines as by the cachet of the ideas themselves.

Nevertheless, for most users the value lay ultimately in the software and not in its enabling
hardware technology. The Lisp machine companies ran into difficulty in the late 1980’s, perhaps
because they didn’t fully understand the consequences of this fact. General-purpose hardware
eventually became good enough to support Lisp once again, and Lisp implementations on such
machines began to compete effectively.

2.7 IBM Lisps: Lisp360 and Lisp370

Although the first Lisps were implemented on IBM computers, IBM faded from the Lisp scene
during the late 1960’s, for two reasons: better cooperation between MIT and DEC and a patent
dispute between MIT and IBM.

In the early 1960’s, Digital Equipment Corporation discussed with MIT the needs MIT had
for computers, and features were added to help Lisp implementations. As on the 7094, each 36-
bit word could hold two addresses to form a dotted pair, but on the PDP-10 each address was
18 bits instead of 15. The PDP-10 halfword instructions made CAR, CDR, RPLACA, and RPLACD

particularly fast and easy to implement. The stack instructions and the stack-based function
calling instructions improved the speed of of Lisp function calls. (The MIT AI Laboratory received
the first—or second—PDP-6, and it was the lab’s mainstay computing engine until it was replaced
by its successor, the PDP-10.)

Moreover, in the early 1960’s, IBM and MIT disputed who had invented core memory, and IBM
insisted on enforcing its patents against MIT. MIT responded by declining to use IBM equipment
as extensively as it had in the past. This provided further impetus to use DEC equipment instead,
particularly for Lisp and AI.

Nevertheless, Lisp was implemented at IBM for the IBM 360 and called Lisp360. When the
IBM 370 came out, Lisp370 implementation began. Lisp370 was later called Lisp/VM.

Lisp360 was basically a batch Lisp, and it was used fairly extensively for teaching in universities.
Lisp370 began with the definition of a core Lisp based on a formal semantics expressed in the

SECD model [Landin, 1964]. This definition fit on one or two pages. The Lisp370 project was
under the direction of Fred Blair (who developed the SECD definition) at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York. Other members of the group included
Richard W. Ryniker II, Cyril Alberga, Mark Wegman, and Martin Mikelsons; they served primarily
themselves and a few research groups, such as the SCRATCHPAD group and some AI groups at
Yorktown.
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Lisp370 supported both special binding and lexical binding, as well as closures over both lexical
and special variables, using a technique similar to spaghetti stacks. Jon L White spent calendar
year 1977 at Yorktown Heights working on Lisp370 and then returned to MIT; his experience at
IBM had some influence on subsequent MacLisp development and on the NIL dialect.

Lisp370 had an Interlisp-like programming environment written to operate on both hardcopy
terminals and the ubiquitous 3270 character-display terminal. The Interlisp-10 model was ideal
because it was developed with slow terminals in mind, and the half-duplex nature of most IBM
mainframe interactions had a similar feel. During the summer of 1976, Gabriel wrote the first
version of this environment as a duplicate of the environment he had written for MacLisp at the
Stanford AI Lab. Later, Mark Wegman and his colleagues at Yorktown extended this environment
to include screen-based—rather than line-based—interaction and editing.

Improvements were made to the underlying Lisp system, such as good performance and the
separation of the compilation and runtime environments (which was accomplished through the use
of separate Lisp images).

Other Lisps later appeared on the 360/370 line of computers, including several Common Lisps.
The first Common Lisp to appear on the IBM 370 was written by Intermetrics, featuring good
compilation technology. However, the Lisp was not well-constructed and never made much of an
impact in the Lisp world. Several years later, Lucid ported its Common Lisp to the 370 under
contract to IBM. IBM withdrew its support of Lisp370 in the late 1980’s in favor of Common Lisp.

2.8 Scheme: 1975–1980

The dialect of Lisp known as Scheme was originally an attempt by Gerald Jay Sussman and Guy
Steele during Autumn 1975 to explicate for themselves some aspects of Carl Hewitt’s theory of ac-
tors as a model of computation. Hewitt’s model was object-oriented (and influenced by Smalltalk);
every object was a computationally active entity capable of receiving and reacting to messages.
The objects were called actors, and the messages themselves were also actors. An actor could have
arbitrarily many acquaintances; that is, it could “know about” (in Hewitt’s language) other actors
and send them messages or send acquaintances as (parts of) messages. Message-passing was the
only means of interaction. Functional interactions were modeled with the use of continuations;
one might send the actor named “factorial” the number 5 and another actor to which to send the
eventually computed value (presumably 120).

Sussman and Steele had some trouble understanding some of the consequences of the model
from Hewitt’s papers and language design, so they decided to construct a toy implementation of
an actor language in order to experiment with it. Using MacLisp as a working environment, they
decided to construct a tiny Lisp interpreter and then add the necessary mechanisms for creating
actors and sending messages. The toy Lisp would provide the necessary primitives for implementing
the internal behavior of primitive actors.

Because Sussman had just been studying Algol [Naur, 1963], he suggested starting with a
lexically scoped dialect of Lisp. It appeared that such a mechanism would be needed anyway for
keeping track of acquaintances for actors. This allowed actors and functions to be created by
almost identical mechanisms. Evaluating a form beginning with the word lambda would capture
the current variable-lookup environment and create a closure; evaluating a form with the word
alpha would also capture the current environment but create an actor. Message passing could be
expressed syntactically in the same way as function invocation. The difference between an actor
and a function would be detected in the part of the interpreter traditionally known as apply. A
function would return a value, but an actor would never return; instead, it would typically invoke
a continuation, another actor that it knows about. Thus one might define the function
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(define factorial

(lambda (n)

(if (= n 0) 1 (* n (factorial (- n 1))))))

or the equivalent actor

(define actorial

(alpha (n c)

(if (= n 0) (c 1) (actorial (- n 1) (alpha (f) (c (* f n)))))))

Note in this example that the values of c and n, passed in the message that invokes the outer alpha
expression, become acquaintances of the continuation actor created by the inner alpha expression.
This continuation must be passed explicitly because the recursive invocation of actorial is not
expected to return a value.

Sussman and Steele were very pleased with this toy actor implementation and named it
“Schemer” in the expectation that it might develop into another AI language in the tradition
of Planner and Conniver. However, the ITS operating system had a 6-character limitation on file
names and so the name was truncated to simply “Scheme” and that name stuck.

Then came a crucial discovery—one that, to us, illustrates the value of experimentation in
language design. On inspecting the code for apply, once they got it working correctly, Sussman
and Steele were astonished to discover that the codes in apply for function application and for
actor invocation were identical! Further inspection of other parts of the interpreter, such as the
code for creating functions and actors, confirmed this insight: the fact that functions were intended
to return values and actors were not made no difference anywhere in their implementation. The
difference lay purely in the primitives used to code their bodies. If the underlying primitives return
values, then the user can write functions that return values; if all primitives expect continuations,
then the user can write actors. But the lambda and alpha mechanisms were themselves identical,
and from this Sussman and Steele concluded that actors and closures were the same concept.
Hewitt later agreed with this assessment, noting, however, that two types of primitive actor in
his theory, namely cells (which have modifiable state) and synchronizers (which enforce exclusive
access), cannot be expressed as closures in a lexically scoped pure Lisp without adding equivalent
primitive extensions.

Sussman and Steele did not think any less of the actors model—or of Lisp—for having made
this discovery; indeed, it seemed to them that Scheme still might well be the next AI language,
capturing many of the ideas then floating around about data and control structure but in a much
simpler framework. The initial report on Scheme [Sussman, 1975b] describes a very spare language,
with a minimum of primitive constructs, one per concept. (Why take two when one will do?) There
was a function constructor lambda, a fixpoint operator labels, a condition if, a side effect aset, a
continuation accessor catch, function application, variable references, and not too much else. There
was an assortment of primitive data structures such as symbols, lists, and numbers, but these
and their associated operations were regarded as practical conveniences rather than theoretical
requirements.

In 1976 Sussman and Steele wrote two more papers that explored programming language seman-
tics using Scheme as a framework. Lambda: The Ultimate Imperative [Steele, 1976b] demonstrated
how a wide variety of control structure ideas could be modeled in Scheme. Some of the models
drew on earlier work by Peter Landin, John Reynolds, and others [Landin, 1965; Reynolds, 1972;
Friedman, November] The paper was partly tutorial in intent and partly a consolidated catalog of
control structures. (This paper was also notable as the first in a long series of “Lambda: The Ulti-
mate X ” papers, a running gag that is as well-known in the Lisp community as the “X Considered
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Harmful” titles are in the broader programming-languages community.) Lambda: The Ultimate
Declarative [Steele, 1976a] concentrated on the nature of lambda as a renaming construct; it also
provided a more extensive comparison of Scheme and Hewitt’s PLASMA (see section 4), relating
object-oriented programming generally and actors specifically to closures. This in turn suggested
a set of techniques for constructing a practical compiler for Scheme, which this paper outlined in
some detail. This paper was a thesis proposal; the resulting dissertation discussed a Scheme com-
piler called RABBIT [Steele, 1978a]. Mitchell Wand and Daniel Friedman were doing similar work
at Indiana University at about this time [Wand, 1977], and they exchanged papers with Sussman
and Steele during this period.

Subsequently Steele and Sussman wrote a revised report on Scheme [Steele, 1978c]; the title of
the report was intended as a tribute to Algol but in turn inspired another increasingly silly series
of titles [Clinger, 1985a; Clinger, 1985b; Rees, 1986]. Shortly thereafter they wrote an extended
monograph, whose title was a play on The Art of the Fugue, illustrating numerous small Lisp
interpreters with variations. The monograph was never finished; only parts Zero, One, and Two
were published [Steele, 1978b]. Part Zero introduced a tiny first-order dialect of Lisp modeled
on recursion equations. Part One discussed procedures as data and explored lexical and dynamic
binding. Part Two addressed the decomposition of state and the meaning of side effects. Part Three
was to have covered order of evaluation (call-by-value versus call-by-name), and Part Four was
intended to cover metalanguage, macro processors, and compilers. That these last two parts were
never written is no great loss, since these topics were soon treated adequately by other researchers.
While The Art of the Interpreter achieved some notoriety in the Scheme underground, it was
rejected by an ACM journal.

A great deal in all these papers was not new; their main contribution was to bridge the gap
between the models used by theoreticians (studying actors and the lambda calculus) and practicians
(Lisp implementors and users). Scheme made theoretical contributions in such areas as denotational
semantics much more accessible to Lisp hackers; it also provided a usable operational platform for
experimentation by theoreticians. There was no need for a centralized implementation group to
support Scheme at a large number of sites or on a wide variety of machines. Like Standard Lisp
but even smaller and simpler, Scheme could be put up on top of some other Lisp system in a very
short time. Local implementations and dialects sprang up at many other sites (one good example
is Scheme 311 at Indiana University [Fessenden, 1983; Clinger, 1984]); it was several years before
anyone made a serious attempt to produce a portable stand-alone Scheme system.

Extensive work on Scheme implementations was carried on at Yale and later at MIT by Jonathan
Rees, Norman Adams, and others. This resulted in the dialect of Scheme known as T; this name
was a good joke all around, since T was to Scheme approximately what the NIL dialect was to
MacLisp. The goal was to be a simple dialect with an especially efficient implementation [Rees,
1982]:

T centers around a small core language, free of complicated features, thus easy to
learn. . . . we have refrained from supporting features that we didn’t feel completely
right about. T’s omissions are important: we have avoided the complicated argument
list syntax of Common Lisp, keyword options, and multiple functionality overloaded
on single functions. It’s far easier to generalize on something later than to implement
something now that one might later regret. All features have been carefully considered
for stylistic purity and generality.

The design of T therefore represented a conscious break not only from the Lisp tradition but from
earlier versions of Scheme in places where Steele and Sussman had relied on tradition rather than
cleaning things up. Names of built-in functions were regularized. T replaced the traditional -P
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suffix with universal use of the question mark; thus numberp became number? and null became
null?. Similarly, every destructive operation had a name ending with an exclamation point; thus
nconc, the MacLisp name for the destructive version of append, became append!. (Muddle [Galley,
1975] had introduced the use of question mark to indicate predicates and Sussman had used this
convention over the years in some of his writing. Interlisp had had a more consistent system of
labeling destructive operations than MacLisp, using the letter d as a prefix.)

T was initially targeted to the VAX (under both Unix and VMS) and to Apollo workstations.
Most of the system was written in T and bootstrapped by the T compiler, TC. The evaluator and
garbage collector, in particular, were written in T and not in machine language. The T project
started with a version of the S-1 Lisp compiler [Brooks, 1982b] and made substantial improvements;
in the course of their work they identified several bugs in the S-1 compiler and in the original report
on RABBIT [Steele, 1978a]. Like the S-1 Lisp compiler, it relied heavily on optimization strategies
from the mainstream compiler literature, most notably the work by Wulf and others on the BLISS-
11 compiler [Wulf, 1975].

A second generation of T compiler, called ORBIT [Kranz, 1986], integrated a host of main-
stream and Lisp-specific optimization strategies, resulting in a truly production-quality Scheme
environment. RABBIT was organized around a principle of translating Lisp code by performing
a source-to-source conversion into “continuation-passing style” (CPS); ORBIT generalized and ex-
tended this strategy to handle assignments to variables. The register allocator used trace scheduling
to optimize register usage across forks, joins, and procedure calls. ORBIT also supported calls to
procedures written in languages other than Lisp. (This was contemporaneous with efforts at CMU
and elsewhere to develop general “foreign function call” mechanisms for Common Lisp.)

2.9 Prelude to Common Lisp: 1980–1984

In the Spring of 1981, the situation was as follows. Two Lisp machine companies had sprung
up from the MIT Lisp machine project: Lisp Machines Inc. (LMI) and Symbolics, Inc. The
former was founded principally by Richard Greenblatt and the latter by a larger group including
David A. Moon. Both initially productized the CADR, the second MIT Lisp machine, and each
licensed the Lisp machine software from MIT under an arrangement that included passing back
any improvements made by the companies. Symbolics soon embarked on designing and building a
follow-on Lisp machine, which it would call the 3600. The language Lisp-Machine Lisp had evolved
greatly since the first definition published in 1978, acquiring a variety of new features, most notably
an object-oriented extension called Flavors.

The Xerox Lisp machines Dolphin and Dorado were running Interlisp and were in use in research
Labs mostly located on the West Coast. BBN was constructing its Interlisp machine called the
Jericho, and a port of Interlisp to the Vax was under way.

At MIT a project had started to define and implement a descendant of MacLisp called NIL on
the Vax and S1 computers.

At CMU, Scott Fahlman and his colleagues and students were defining and implementing a
MacLisp-like dialect of Lisp called Spice Lisp, which was to be implemented on the Spice machine—
Scientific Personal Integrated Computing Environment.

2.10 Early Common Lisp

If there were no consolidation in the Lisp community at this point, Lisp might have died. ARPA
was not interested in funding a variety of needlessly competing and gratuitously different Lisp
projects. And there was no commercial arena—yet.
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2.10.1 Out of the Chaos of MacLisp

In April 1981, ARPA called a “Lisp Community Meeting”, in which the implementation groups
got together to discuss the future of Lisp. ARPA sponsored a lot of AI research, and their goal
was to see what could be done to stem the tide of an increasingly diverse set of Lisp dialects in its
research community.

The day before the ARPA meeting, part of the Interlisp community got together to discuss
how to present a situation of a healthy Interlisp community on a variety of machines. The idea
was to push the view of a standard language (Interlisp) and a standard environment existing on an
ever-increasing number of different types of computers.

The day of the meeting, the Interlisp community successfully presented themselves as a coherent
group with one goal and mission.

The MacLisp-descended groups came off in a way that can be best demonstrated with an anec-
dote. Each group stood up and presented where they were heading and why. Some questions arose
about the ill-defined direction of the MacLisp community in contrast to the Interlisp community.
Scott Fahlman said, “the MacLisp community is not in a state of chaos. It consists of four well-
defined groups going in four well-defined directions.” There was a moment’s pause for the laughter
to subside [Steele, 1982].

Gabriel attended the Interlisp pow-wow the day before the ARPA meeting, and he also witnessed
the spectacle of the MacLisp community at the meeting. He didn’t believe that the differences
between the MacLisp groups were insurmountable, so he began to try to sell the idea of some sort
of cooperation among the groups.

First he approached Jon L White. Second, Gabriel and White approached Guy Steele, then
at CMU and affiliated with the SPICE Lisp project. The three of them—Steele, White, and
Gabriel—were all associated one way or another with the S1 NIL project. A few months later,
Gabriel, Steele, White, Fahlman, William Scherlis (a colleague of Gabriel’s then at CMU), and
Rodney Brooks (part of the S-1 Lisp project) met at CMU, and some of the technical details of the
new Lisp were discussed. In particular, the new dialect was to have the following basic features:

• Lexical scoping, including full closures

• Multiple values, of a form like Lisp-Machine Lisp, but perhaps with some modifications for
single-value-forcing situations

• A Lisp-2, in the sense of separate value and function cells [Gabriel, 1988] (see section 2.12.6)

• Defstruct

• SETF

• Fancy floating point numbers, including complex and rational numbers (this was the primary
influence of S-1 Lisp)

• Complex lambda-list declarations, similar to Lisp-Machine Lisp

• No dynamic closures (called “flexures” in NIL)

After a day and a half of technical discussion, this group went off to the Oakland Original,
a greasy submarine sandwich place not far from CMU. During and after lunch the topic of the
name for the Lisp came up, and such obvious names as NIL and SPICE Lisp were proposed and
rejected—as giving too much credit to one group and not enough to others—and such non-obvious
names as Yu-Hsiang Lisp were also proposed and reluctantly rejected.

The name felt to be best was “Standard Lisp,” but another dialect was known by that name
already. In searching for similar words, the name “Common Lisp” came up. Gabriel remarked that
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this wasn’t a good name because we were trying to define an Elitist Lisp, and “Common Lisp”
sounded too much like “Common Man Lisp.”

The naming discussion resumed at dinner at the Pleasure Bar, an Italian restaurant in another
Pittsburgh district, but no luck was had by all.

Later in E-mail, Moon referred to “whatever we call this common Lisp,” and this time, amongst
great sadness and consternation that a better name could not be had, it was selected.

The next step was to contact more groups. The key was the Lisp machine companies, which
would be approached last. In addition, Gabriel volunteered to visit the Franz Lisp group in Berkeley
and the PSL group in Salt Lake City.

The PSL group did not fully join the Common Lisp group, and the Franz group did not join
at all. The Lisp370 was, by oversight, not invited, and the Interlisp community sent an observer.
ARPA was successfully pulled into supporting the effort.

The people and groups engaged in this grassroots effort were, by and large, on the ARPANET—
because they were affiliated or associated with AI labs—so it was natural to decide to do most of
the work over the network through electronic mail, which was automatically archived. In fact this
was the first major language standardization effort carried out nearly entirely by E-mail.

The meeting with Symbolics and LMI took place at Symbolics in June 1981. Steele and Gabriel
drove from Pittsburgh to Cambridge for the meeting. The meeting alternated between a deep
technical discussion of what should be in the dialect and a political discussion about why the new
dialect was a good thing. From the point of view of the Lisp machine companies, the action was
with Lisp machines, and the interest in the same dialect running more places seemed academic. Of
course, there were business reasons for getting the same dialect running in many places, but people
with business sense did not attend the meeting.

At the end, both Lisp machine companies decided to join the effort, and the Common Lisp
Group was formed:

Alan Bawden Richard P. Gabriel William L. Scherlis
Rodney A. Brooks Joseph Ginder Richard M. Stallman
Richard L. Bryan Richard Greenblatt Barbara K. Steele

Glenn S. Burke Martin L. Griss Guy L. Steele Jr.
Howard I. Cannon Charles L. Hedrick William vanMelle
George J. Carrette Earl A. Killian Walter van Roggen

David Dill John L. Kulp Allan C. Weschler
Scott E. Fahlman Larry M. Masinter Daniel L. Weinreb

Richard J. Fateman John McCarthy Jon L White
Neal Feinberg Don Morrison Richard Zippel
John Foderaro David A. Moon Leonard Zubkoff

As a compromise, it was agreed that it was worth defining a family of languages in such a way
that any program written in the language defined would run in any language in the family. Thus, a
sort of subset was to be defined, though it wasn’t clear anyone would implement the subset directly.

Some of the Lisp machine features that were dropped were Flavors, window systems, multipro-
cessing (including multitasking), graphics, and locatives.

During the summer, Steele worked on an initial Common Lisp manual based on the Spice Lisp
manual. His initial work was assisted by Brooks, Scherlis, and Gabriel. Scherlis provided specific
assistance with the type system, mostly in the form of informal advice to Steele. Gabriel and Steele
regularly discussed issues because Gabriel was living at Steele’s home.

The draft, called the Swiss Cheese Edition—because it was full of large holes—was partly a
ballot in which various alternatives and yes-no questions were proposed. Through a process of
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E-mail-based discussion and voting, the first pass of voting took place. This was followed by a
face-to-face meeting in November of 1981, where the final decisions on the questions posed were
settled.

This led to another round of refinement with several other similar drafts/ballots.
The E-mail discussions were often in the form of proposals, discussions, and counterproposals.

Code examples from existing software or proposed new syntax were often exchanged. Because of
the archives everything was available for quick review by people wishing to come up to speed or to
go back to the record.

This style also had some drawbacks. Foremost was that it was not possible to observe the
reactions of other people, to see whether some point angered them, which would mean the point
was important to them. There was no way to see that an argument went too far or had little
support. This meant that time was wasted and that carefully crafted written arguments were
required to get anything done.

Once the process began, the approach to the problem changed from just a consolidation of
existing dialects, which was the obvious direction to take, to trying to design the right thing. Some
people took the view that this was a good time to rethink some issues and to abandon the goal
of strict MacLisp compatibility, which was so important to the early Lisp-Machine Lisp designs.
Some issues, like whether NIL is both a symbol and a CONS cell, were not rethought, though it
was generally agreed that they should be.

One issue that came up early on is worth mentioning, because it is at the heart of one of the
major attacks on Common Lisp, which was mounted during the ISO work on Lisp (see section 2.12).
This is the issue of modularization, which had two aspects: (1) whether Common Lisp should be
divided into a core language plus modules and (2) whether there should be a division into the
so-called white, yellow, and red pages. These topics appear to have been blended in the discussion.

“White pages” refers to the manual proper, and anything that is in the white pages must be
implemented somehow by a Lisp whose developers claim it is a Common Lisp. “Yellow pages” refers
to implementation-independent packages that can be loaded in, for example, TRACE and scien-
tific subroutine packages. The “red pages” were intended to describe implementation-dependent
routines, such as device drivers.

Common Lisp was not broken into a core language plus layers, and the white/yellow/red pages
division never materialized.

Three more drafts were made—the Colander Edition (July 29, 1982), the Laser Edition (Novem-
ber 16, 1982), and the Mary Poppins Edition. The cute names are explained by their subtitles:

Colander: Even More Holes Than Before—But They’re Smaller!
Laser Edition: Supposed to be Completely Coherent
Mary Poppins Edition: Practically Perfect in Every Way

The final draft was the Excelsior Edition. Recall that “excelsior” is not only a term of high praise
but also the name for shredded paper used as packing material.

Virtually all technical decisions were completed by early 1983, but it was almost a year before
the book Common Lisp: The Language would be available, even with a fast publishing job by
Digital Press.

The declared goals of the Common Lisp Group were as follows, paraphrased from CLtl1 [Steele,
1984]:

• Commonality: Common Lisp originated in an attempt to focus the work of several imple-
mentation groups, each of which was constructing successor implementations of MacLisp for
different computers. While the differences among the several implementations will continue
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to force some incompatibilities, Common Lisp should serve as a common dialect for these
implementations.

• Portability: Common Lisp should exclude features that cannot be easily implemented on
a broad class of computers. This should serve to exclude features requiring microcode or
hardware on one hand as well as features generally required for stock hardware, for example
declarations. (We use the term stock hardware to describe commercially available, general-
purpose, “off-the-shelf” computers as opposed to computers specifically designed to support
Lisp.)

• Consistency: The interpreter and compiler should exhibit the same semantics.

• Expressiveness: Common Lisp should cull the best experience from a variety of dialects,
including not only MacLisp but Interlisp.

• Compatibility: Common Lisp should strive to be compatible with Zetalisp, MacLisp, and
Interlisp, in that order.

• Efficiency: It should be possible to write an optimizing compiler for Common Lisp.

• Power: Common Lisp should be a good system-building language, suitable for writing
Interlisp-like user-level packages, but it will not provide those packages.

• Stability: Common Lisp should evolve slowly and with deliberation.

2.10.2 Early Rumblings

The Common Lisp definition process was not all rosy. Throughout there was a feeling among some
that they were being railroaded or that things were not going well. The Interlisp group had input
in the balloting process, but at one point they wrote:

The Interlisp community is in a bit of a quandary about what our contribution to this
endeavor should be. It is clear that Common Lisp is not going to settle very many
languages features in Interlisp’s favor. What should we do?

Part of the problem was the strength of the Lisp machine companies and the need for the
Common Lisp Group to keep them within the fold, which bestowed on them a particularly strong
brand of power. On this point, one of the people in the early Common Lisp Group put it:

Sorry, but the current version [draft] really gives a feeling of ‘well, what’s the largest
subset of Lisp-Machine Lisp we can try to force down everyone’s throat, and call a
standard?’

The Lisp machine folks had a flavor of argument that was hard to contend with, namely that
they had experience with large software systems, and in that realm the particular solutions they
had come up with were, according to them, the right thing. The net effect was that Common Lisp
grew and grew.

One would think that the voices of the stock machine crowd, who had to write a compiler for
Common Lisp, would have objected, but the two strongest voices—Steele and Gabriel—were feeling
their oats over their ability to write a powerful compiler to foil the complexities of Common Lisp.
One often heard them, and later Moon, remark that a “sufficiently smart compiler” could solve a
particular problem. Pretty soon the core group was quoting this “SSC” argument regularly. (Later,
in the mouths of the loyal opposition, it became a term of mild derision.)

The core group eventually became the “authors” of CLtL I: Guy Steele, Scott Fahlman, David
Moon, Daniel Weinreb, and Richard Gabriel. This group shouldered the responsibility for producing
the language specification document and conducting its review. The self-adopted name for the group
was the “Quinquevirate” or, more informally, the “Gang of Five”.
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2.10.3 The Critique of Common Lisp

At the 1984 Symposium on Lisp and Functional Programming, Rod Brooks and Gabriel broke rank
and delivered the stunning opening paper, “A Critique of Common Lisp” [Brooks, 1984]. This was
all the more stunning because Gabriel and Brooks were founders of a company whose business plan
was to become the premier Common Lisp company. Fahlman, on hearing the speech delivered by
Gabriel, called it traitorous.

This paper was only the first in a string of critiques of Common Lisp, and many of those
critiques quoted this paper. The high points of the paper reveal a series of problems that proved
to plague Common Lisp throughout the decade.

This theme reappeared in the history of Common Lisp—the emergence of a number of “un-
Common” Lisps, straining, perhaps, the tolerance of even the most twisted lovers of overused puns.
Each unCommon Lisp proclaimed its better approaches to some of the shortcomings of Common
Lisp.

Examples of Lisp dialects that officially or unofficially declare themselves “unCommon Lisps”
are Lisp370, Scheme, EuLisp, and muLisp. This is clearly an attempt to distance themselves from
the perceived shortcomings of Common Lisp, but, less clearly, their use of this term attests to
the apparent and real strength of Common Lisp as the primary Lisp dialect. To define a Lisp as
standing in contrast to another dialect is to admit the supremacy of that other dialect. (Imagine
Ford advertising the Mustang as “the unCorvette”.)

More than any other single phenomenon, this behavior demonstrates one of the key ingredients
of Lisp diversification: extreme—almost juvenile—rivalry between dialect groups.

We have already seen Lisp370 and Scheme. EuLisp is the European response to Common Lisp,
developed as the lingua franca for Lisp in Europe. Its primary characteristics is that it is a Lisp-1
(no separate function and variable namespaces), has a CLOS-style (Common Lisp Object System)
generic-function type object-oriented system integrated from the ground up, has a built-in module
system, and is defined in layers to promote the use of the Lisp on small, embedded hardware
and educational machines. Otherwise, EuLisp is Common-Lisp like, with more commonality than
disjointness. The definition of EuLisp took a long time; started in 1986, it wasn’t until 1990 that
the first implementation was available (interpreter-only) along with a nearly complete language
specification. Nevertheless, the layered definition, the module system, and the object-orientedness
from the start demonstrate that new lessons can be learned in the Lisp world.

2.11 Other Stock Hardware Dialects: 1980–1984

The rest of the world did not stand still while Common Lisp was developed, though Common Lisp
was the focus of a lot of attention. Portable Standard Lisp spread to the Vax, DEC-20, a variety
of MC68000 machines, and the Cray 1. Its Emode environment (later Nmode) proved appealing to
Hewlett-Packard, which “productized” it in the face of a growing Common Lisp presence.

Franz Lisp was ported to many systems, and it became the workhorse stock hardware Lisp for
the years leading up to the general availability of Common Lisp in 1985–1986.

In the market, the Dolphin was taking a beating in the performance sweepstakes, primarily
because it was a slow machine that ran the Interlisp virtual machine. The efforts of Xerox were
aimed at porting and performance, with little attention to improving the dialect or the environment,
though work continued in this area. The main Interlisp developers were tuning.

Interlisp/Vax made an appearance, but has to be regarded as a failure with three contributing
causes: (1) it provided compatibility with Interlisp-10, the branch of the Interlisp family doomed
by the eventual demise of the PDP-10, rather than with Interlisp-D; (2) it provided only a stop-
and-copy garbage collector, which has particularly bad performance on a Vax; and (3) as the rest
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of the Lisp world, including the Interlisp world, flocked to personal Lisp machines, the Vax was
never taken seriously for Lisp purposes except by a small number of businesses.

In France, Jérôme Chailloux and his colleagues developed a new dialect of Lisp called Le Lisp.
The dialect was reminiscent of MacLisp, and it focused on portability and efficiency. It needed
to be portable because the computer situation in Europe was not as clear as it was in the US for
Lisp. In the US, Lisp machines were dominant for Lisp, but these machines were not as available
and often were prohibitively expensive in Europe. Research labs in Europe were frequently given
or acquired a range of peculiar machines (from the US perspective). Therefore, portability was a
must.

The experience with Vlisp taught Chailloux that performance and portability can go together,
and, extending some of the Vlisp techniques, his group was able to achieve their goals. By 1984
their dialect ran on about ten different machines and demonstrated performance very much better
than Franz Lisp, the most comparable alternative. On Vax 780’s, Le Lisp performed about as well
as Symbolics 3600’s.

In addition, Le Lisp provided a full-fledged programming environment called Ceyx. Ceyx had
a full set of debugging aids, a full-screen, multi-window structure editor and pretty printer, and an
object-oriented programming extension, also called Ceyx.

The Scheme community grew from a few aficionados to a much larger group, characterized by
an interest in the mathematical aspects of programming languages. Scheme’s small size, roots in
lambda calculus, and generally compact semantic underpinnings began to make it popular as a
vehicle for research and teaching. In particular, strong groups of Scheme supporters developed at
MIT, Rice, and Indiana University. In general these groups were started by MIT graduates who
joined the faculty at these schools.

At MIT, under the guidance of Gerry Sussman and Hal Abelson, Scheme was adopted for
teaching undergraduate computing. The book Structure and Interpretation of Computer Programs
[?] became a classic and vaulted Scheme to notoriety in a larger community.

Several companies sprang up that made commercial implementations of Scheme: Chez Scheme
by Cadence Research Systems was started by R. Kent Dybvig, Semantic Microsystems by Will
Clinger, Anne Hartheimer, and John Ulrich, and Texas Instruments fielded a version of Scheme.
Chez Scheme ran on various workstations, Semantic Microsystems’ Scheme was called MacScheme
and ran on Macintoshes. PC Scheme ran on IBM PC’s and clones such as the one TI built and
sold.

The original Revised Report on Scheme was taken as a model for future definitions of Scheme,
and a self-selected group of so-called “authors” took on the role of evolving Scheme. The rule they
adopted was that features could be added only by unanimous consent. After a fairly short period
in which certain features like CALL-WITH-CURRENT-CONTINUATION were added, the rate of
change of Scheme slowed down due to this rule. Only peer pressure in a highly intellectual group
could convince any recalcitrant author to change his blackball. As a result there is a widely held
belief that whenever a feature is added to Scheme, it is clearly the right thing. For example, only in
late 1991 were macros added to the language in an appendix—as a partially standardized facility.

There would be a series of Revised Reports, called “The Revised, . . . , Revised Report on
Scheme.” In late 1991 “The Revised, Revised, Revised, Revised Report on Scheme” was written
and approved; it is affectionately called “R4RS.”

Many of those who would later become members of the Common Lisp Group would proclaim a
deep-seated love of Scheme and a not-so-secret desire to see something like it become the next Lisp
standard. However, the Scheme and Common Lisp communities would become sometimes bitter
rivals in the latter part of the decade.
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2.11.1 Zetalisp

Zetalisp was the name of the Symbolics version of Lisp-machine Lisp. Because the 3600—the
Symbolics second-generation Lisp machine, which is described below—was programmed almost
entirely in Lisp, Zetalisp came to require a significant set of capabilities not seen in any single Lisp
to this point. Not only was Zetalisp used for ordinary programming, but the operating system,
the editor, the compiler, the network server, the garbage collector, and the window system were
all programmed in Zetalisp, and because the earlier Lisp-machine Lisp was not quite up to these
tasks, Zetalisp was expanded to handle them.

The primary addition to Lisp-machine Lisp was Flavors, a so-called non-hierarchical object-
oriented language, a multiple inheritance, message-passing system developed from some ideas of
Howard Cannon. The development of the ideas into a coherent system was largely due to David
A. Moon, though Cannon was a key individual.

The features of Flavors was driven by the needs of the Lisp machine window system, which, for
a long time, was regarded as the only example of a system whose programming required multiple
inheritance.

Other noteworthy additions were FORMAT and SETF, complex arrays, and complex lambda-
lists for optional and keyword-named arguments. FORMAT is a mechanism for producing string
output conveniently by, basically, taking a pre-determined string with placeholders and substituting
computed values or strings for those placeholders—though it became much more complex than this
because the placeholders included iteration primitives for producing lists of results, plurals, and
other such exotica. SETF was discussed earlier.

One of the factors in the acceptance and importance of Zetalisp was the acceptance of the Lisp
machines, which is discussed in the next section. Because Lisp machines—particularly Symbolics
Lisp machines—were the most popular vehicles for real Lisp work in a commercial setting, there
would grow to be an explicit belief, fostered by Symbolics itself, that Lisp-machine Lisp (Zetalisp)
was the primary dialect for Lisp. Therefore, the Symbolics folks were taken very seriously as a
strong political force and a required political ally for the success of a wider Lisp standard.

2.11.2 Early Lisp Machine Companies

There were five primary Lisp machine companies: Symbolics; Lisp Machine, Inc. (LMI); Three
Rivers Computer, later renamed PERQ after its principal product; Xerox; and Texas Instruments
(TI).

Of these, Symbolics, LMI, and TI all used basically the same software licensed from MIT as the
basis of their offerings. The software included the Lisp implementation, the operating system, the
editor, the window system, the network software, and all the utilities. There was an arrangement
wherein the software would be cheaply (or freely) available as long as improvements are were passed
back to MIT.

Therefore, the companies competed primarily on the basis of hardware performance but sec-
ondarily on the availability of advances in the common software base before that software passed
back to the common source. Some of the companies also produced propriety extensions, such as C
and FORTRAN implementations from Symbolics.

Xerox produced the D-machines, which ran Interlisp-D.
Three Rivers sold a machine, the PERQ, that ran either a Pascal-based operating system and

language or Spice Lisp, later Common Lisp based on Spice Lisp.
Thus, all the Lisp-machine companies started out with existing software, and all the MacLisp-

derived Lisp-machine companies licensed their software from a university.
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Of these companies, Symbolics is most successful (as measured by number of installed machines
at the end of the pre-Common-Lisp era), followed by Xerox and TI, though TI possibly can claim
the most installed machines on the basis of one or two large company purchases.

Symbolics is most interesting of these companies because of the extreme influence of Symbolics
on the direction of Common Lisp—however, we do not want to claim that the other companies did
not have strong significance. The popularity of Zetalisp—or at least its apparent influence on the
other people in the Common Lisp group—stemmed largely from the popularity of the 3600.

The 3600 was a second-generation Lisp machine, the first being a version of the CADR, called
the LM-2. Both Symbolics and LMI started their businesses by producing essentially the CADR;
the LMI version was called the LAMBDA. However, Symbolics’s business plan was to produce a
much faster Lisp machine and to enter the workstation sweepstakes.

Sometimes it is easy to forget that, in the early 1980’s, workstations were an oddity, and
the workstations were generally so computationally underpowered that many did not take them
seriously. The PDP-10 still offered vastly better performance than the workstations, and it simply
was not obvious that engineers would ever warm up to them or that they would form a large new
market. Furthermore, it was not clear that a Unix-based/C-based workstation was necessarily the
winner either, since it was thought that applications would drive the market more than software
development. Therefore, it was not foolish for Symbolics to have the business plan it did.

Symbolics and LMI were founded by rivals at the MIT AI Lab, with Richard Greenblatt founding
LMI and almost everyone else founding Symbolics, in particular Moon, Weinreb, Cannon, and
Knight.

One of the factors in the adoption of Symbolics Lisp machines and Zetalisp was the fact that the
first 3600’s did not have a garbage collector, which meant that the performance penalty of garbage
collecting a large address space was not observed. Originally the 3600 was to have a Baker-style
incremental stop-and-copy collector, but because the address space was so large, ordinary programs
did not exhaust memory for several days and intensive ones could run for about 8 hours. There
was a facility for saving the running image, which basically did a stop-and-copy garbage collection
to disk, and this image could be resumed. Therefore, instead of garbage collecting on-the-fly, a
programmer would run until memory was exhausted, then he would start up the lengthy (up to
several hours) process of disk-saving, and he would restart his program after dinner or the next
day.

The incremental garbage collector was released several years after the first 3600’s, and it proved
to have relatively bad performance, possibly due to paging problems. Instead, Moon developed an
ephemeral garbage collector that is similar to the Ungar generation scavenger collector developed
for Smalltalk [?]. with generation scavenging, objects are promoted from one generation to the next
by a stop-and-copy process. After several generations objects are promoted (tenured) to long-term
storage. The idea is that an object will become garbage soon after its creation, so if you can look
at the ages of objects and concentrate on only young objects, you will get most of the garbage and
because a small working set is maintained paging performance is good.

Ephemeral garbage collection [Moon, 1984] is similar but maintains a few consing areas rep-
resenting generations and a list of regions of memory where pointers to objects in the consing
areas were created, and those regions are scanned in a stop-and-copy operation, moving from one
generation to the other. Because objects in Smalltalk are created less frequently than in Lisp, the
tradeoffs are a little different and the data structures are different.

The ephemeral garbage collector proved effective, and several years after the first 3600 was
sold, an effective garbage collector was operational. It took a while for users to get used to the
performance differences, but by then the 3600 was already established and the position of the 3600
was firmly implanted.
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PERQ entered the market with a poorly performing microcoded machine that had been used
a document preparation computer. Scott Fahlman was involved with the company, and when
Common Lisp made its debut, the Spice Lisp code was a nearly compliant Common Lisp, so PERQ
was the first Common Lisp available on a Lisp machine.

The original PERQ and its later versions never made much of a commercial impact outside the
Pittsburgh area, probably because its performance and price-performance were relatively poor.

We already saw the early history of the Xerox D-machines. Before the Common Lisp era, their
use became widespread in former InterLisp-10 circles.

Texas Instruments began to enter the Lisp machine business just before CLtL1 was published,
in early 1984. They began with the Viking project, which was working with Spice Lisp and the
MC68020. Later, they decided to go the pure Lisp machine route and introduced the Explorer,
which was a microcoded machine that also ran the MIT software. Later, TI joined with LMI
to trade some technology, which seemed to have little or no effect on the business fortunes of
either company, except to inject capital into LMI, prolonging its existence. The Explorer had good
price-performance, and also decent performance, and the high favor in which TI was held by the
Department of Defense resulted in good sales for TI during the early Common Lisp era.

2.11.3 MacLisp on the Decline

Though still in widespread use, and spreading a bit, the development of MacLisp halted during the
early 1980’s. At this point, MacLisp ran on ITS, Multics, Tenex, TOPS-10, TOPS-20, and WAITS.
Though only available on PDP-10’s or related machines, these included the PDP-10, the DEC-10,
the DEC-20, and the Foonly F2 and F4.

Funding for MacLisp development had been provided by the Macsyma Group, because the
primary client for MacLisp, from the point of view of MIT, was the people who used Macsyma—
the Macsyma Consortium. From the point of view of the rest of the world, however, Macsyma
was an interesting application of Lisp, but MacLisp was of much wider appeal as a research and
development tool for AI, particularly vision and robotics. However, these groups were not flush
with funding, and, in any event, none found any reason to do other than to accept the use of a
freely available MacLisp.

The funding for MacLisp was supplanted by funding for NIL on the Vax by the Department of
Energy. The Department of Energy oversaw such things as research and development of nuclear
weapons in addition to its more benign projects such as civilian energy. Therefore, the DOE was
an alternative source of defense funding, and it funded such projects as S1 Lisp.

In general, each site that used MacLisp had a local wizard who was able to handle most of the
problems encountered, possibly by consulting Jon L White. In at least one case, funding was made
available to MIT to do some custom work. For instance, the single-segment version of MacLisp on
WAITS was paid for by the Stanford AI Lab, and the work was done on site by Howard Cannon.

MacLisp was the host for a variety of language development and features over the years, in-
cluding MicroPlanner, Conniver, Scheme, Flavors, Frames, Extends, Qlisp, and various vision-
processing features. The last major piece of research in MacLisp was the multi-program program-
ming environment done by Martin E. Frost and Gabriel at Stanford [?]. This environment defined
a protocol that allowed MacLisp and E, the Stanford display editor which had operating-system
support, to communicate over a mailbox-style operating system mechanism. With this mechanism,
the code devoted to editing was shared by any users using E (even for non-Lisp tasks) by using
the timesharing mechanism of the underlying host computer, and frequently code executed for the
purpose of editing was executed within the operating system, requiring no code to be swapped in
or paged in. It was also possible for Lisp programs to control the editor, so that very powerful
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“macros” written in Lisp could be used instead of the arcane E macro language. This environment
predated similar Lisp/Emacs environments by a few years.

However, in the early days of the Common Lisp group, funding for NIL for the Vax by DOE and
the Macsyma Consortium was halted, perhaps fueled by the belief that Lisp machines would run
Macsyma well, perhaps fueled by the belief that the development of Common Lisp would provide
the common base for Macsyma.

Around the same time that DOE funding stopped, Symbolics started a Macsyma Group to sell
Lisp-machine-based Macsyma. This group would remain profitable until its dissolution in the late
1980’s or early 1990’s.

With NIL funding stoppage, Jon L White joined Xerox to work on Interlisp—a stranger situation
is difficult to imagine. First, White was apparently so clearly a Easterner in personality that the
whole aura of the California lifestyle seems too foreign for him to accept. Second, the rivalry
between MacLisp and InterLisp over the years would seem to obviate them working together.

2.12 Standards Development: 1984–1992

The period just after the release of Common Lisp: The Language (CLtL1) marked the beginning
of an era of unprecedented Lisp popularity. In large part this popularity was coupled with the
popularity of AI, but not entirely. Let’s look at the ingredients: For the first time there was a
commonly agreed standard for Lisp, albeit a flawed one; AI was on the rise, and Lisp was the
language of AI; there appeared to be a burgeoning workstation market, and the performance of
the workstations on Lisp was not far off from the Lisp machines; the venture capital community
was looking at the success of companies like Sun, were awed by the prospects of AI, and had a
lot of money as a result of the booming economy in the first half of the Reagan presidency; and
computer scientists were turning into entrepreneurs in droves, spurred by the near-instant success
of their colleagues at companies like Sun and Valid. Articles about Lisp were being written for
popular magazines, requests for Common Lisp were streaming into places like CMU (Fahlman) and
Stanford (Gabriel), and otherwise academic-only people were asked to speak at industry conferences
and workshops on the topics of AI and Lisp and were regarded as sages of future trends.

The key impetus behind the interest by industry in Lisp and AI was that the problems of
hardware seemed under control and the raging beast of software was next to be tamed. More
traditional methods seemed inadequate, and there was always the feeling that the new thing, the
radical thing would have a more thorough effect than the old, conservative thing—this is simply
the allure of cachet, and it attracted both businessmen and venture capitalists.

2.12.1 Overview of Lisp Companies

As early as 1984—the year CLtL1 was published—several companies were founded to commercialize
Common Lisp. These included Franz, Inc, Gold Hill, and Lucid, Inc. Other companies on the
fringe of Lisp joined the Lisp bandwagon with Common Lisp or with Lisps that were on the
road to Common Lisp. These included Three Rivers (PERQ) and TI. Some mainstream computer
manufacturers joined in the Lisp business. These included DEC, HP, Sun, Apollo, Prime, and IBM.
Some European companies joined the Common Lisp bandwagon, like Siemens and Honeywell Bull.
And the old players began work on Common Lisp. These included the Lisp machine companies and
Xerox. A new player from Japan—Kyoto Common Lisp (KCL)—provided a bit of a spoiler: KCL
has a compiler that compiles to C, which is compiled by the C compiler. This Lisp was licensed
essentially free, and the Common Lisp companies suddenly had a surprising competitor.
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Though one might think a free, good-quality product would easily beat an expensive better-
quality product, this proved false, and the Common Lisp companies thrived despite their no-cost
competitor. It turned out that better performance, better quality, commitment by developers to
moving ahead with the standard, and better service were more important than no price tag.

2.12.2 Common Lisp Companies

Franz, Inc., was already in business selling Franz Lisp, the MacLisp-like Lisp dialect used to trans-
port a version of Macsyma called Vaxsyma. Franz Lisp was the most popular dialect of Lisp on the
Vax until plausible Common Lisps appeared. Franz decided to go into the Common Lisp market,
funding the effort with the proceeds from its Franz Lisp sales. The principal founders of Franz are
Fritz Kunze, John Foderaro, and Richard Fateman. Kunze was a PhD student of Fateman’s at
the University of California at Berkeley in the mathematics department; Foderaro, having already
obtained his PhD under Fateman, became the primary architect and implementor of the various
Lisps offered by Franz, Inc. Fateman, one of the original implementors of Macsyma at MIT, carried
the MacLisp/Lisp torch to Berkeley, and he was responsible for the porting of Macsyma to the Vax.
Franz adopted a direct-sales strategy, in which the company targeted customers and sold directly
to them.

Gold Hill was a division of a parent company named Apiary Inc., which was founded by Carl
Hewitt and his student Jerry Barber. Barber had spent the year before founding Apiary/Gold Hill
at INRIA in France, where he wrote a MacLisp/Zetalisp-like Lisp for the IBM PC. This work was
partly funded by INRIA. When he returned, it was close enough to Common Lisp that Hewitt and
Barber thought they could capitalize on the wave of Common interest by selling the existing Lisp as
a Lisp about to become Common Lisp. Because the PC was believed to be an important machine
for AI, it seemed to be an ironclad business plan, in which a variety of glamorous East-coast venture
capitalists invested. Gold Hill’s Lisp was not a Common Lisp and in the early years the company
endured some criticism for false advertising, but as the Lisp was transformed into a Common Lisp,
its quality apparently dropped. At the same time “AI winter” hit and Gold Hill was not able to
survive at the level it once had. It was abandoned by its venture capitalists, laid off just about all
its employees, and continues today as a two-man operation. Gold Hill sold direct as well.

“AI winter” is the term first used in 1988 to describe the unfortunate commercial fate of AI.
From the late 1970’s and until the mid-1980’s, artificial intelligence was an important part of the
computer business—many companies were started with the then-abundant venture capital available
for high-tech start-ups. By 1988 it became clear to business analysts that AI would not experience
meteoric growth, and there was a backlash against AI and, with it, Lisp as a commercial concern.
AI companies started to have substantial financial difficulties, and so did the Lisp companies.

Lucid, Inc. was founded by Gabriel (Stanford), Rod Brooks (MIT), Eric Benson (Utah/PSL),
Scott Fahlman (CMU), and a few others. Backed by venture capital, Lucid adopted a different
strategy from that of the other Common Lisp companies. Instead of starting with the Spice Lisp
source code, Lucid wrote an implementation of Common Lisp from scratch; moreover, it adopted
an OEM strategy. (The OEM idea is to make arrangements with a computer (hardware) company
to market and sell Lisp under its own name. However, the Lisp is implemented and maintained by
an outside company, in this case, Lucid, which collects royalties.) Lucid quickly struck OEM deals
with Sun, Apollo, and Prime. This was possible because Lucid traded on the strength of the names
of its founders and the fact that it was writing a Common Lisp from scratch and would, therefore,
be the first true Common Lisp.

Eventually Lucid ported its Lisp and established OEM arrangements with IBM, DEC, and
HP. Though the royalties were relatively small per copy, the OEM route established Lucid as the
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primary stock-hardware Lisp company. Because the hardware companies were enthusiastic about
the business opportunities for AI and Lisp, they invested a lot in the business. Often they would
pay a large porting fee, a fixed-price licensing fee, and maintenance fees as well as royalties. Getting
Sun as an OEM was the key for Lucid’s survival, because Sun workstations developed the cachet
that was needed to attract customers to the Lisp. Sun was always regarded as leading-edge, so
people interested in leading-edge AI technology headed first to Sun. Sun also employed a number
of engineers who did their own Lisp development, mostly in the area of programming environments.

Before the AI winter hit, Lucid began diversifying into other languages (C/C++) and program-
ming environments.

2.12.3 Big Companies With Their Own Lisps

DEC and HP implemented their own Lisps. DEC started with the Spice Lisp code and HP with
PSL. Each company believed that AI would take off and that having a Lisp was an essential
ingredient for success in the AI business. Both DEC and HP made arrangements with the original
implementors of those Lisps, both by hiring students who had worked on them and by arranging
for on-going consulting. Both DEC and HP grew fairly large businesses out of these Lisp groups,
large by the standards of other Lisp companies. At the peak of Lisp in the last quarter of the
1980’s, the main players in the Lisp business by revenue were Symbolics, TI, DEC, HP, Sun, and
Lucid.

DEC and HP put a lot of effort into their Lisp offerings, primarily in the area of environments
but also in the performance of the Lisp system itself.

In the last quarter of the 1980’s, HP realized that PSL was not the winner and they needed to
provide a Common Lisp. They chose Lucid to provide it, and they reduced their own engineering
staff, choosing to focus more on marketing. Since the AI winter was just about upon them when
they made the decision, it is not clear whether their perception of this situation forced them to cut
back on their Lisp investment.

In the early 1990’s, in the midst of AI winter, DEC also decided to abandon its own efforts and
also chose Lucid.

IBM had a number of platforms suitable for Lisp: the PC, the mainframe, and the RT. Of
these, IBM initially decided to put a Common Lisp only on the RT. IBM funded a pilot program
to put Spice Lisp (Common Lisp) on the RT, which was to be IBM’s first real entry into the
workstation market. Because of Fahlman’s relationship with Lucid (a founder), a contract was
eventually written for Lucid to port its Lisp to the RT for IBM.

Later, IBM reentered the workstation market with its RS6000, which has good performance,
and Lucid did the Common Lisp for it. IBM eventually contracted with Lucid to provide the same
Lisp on the 370 and PS-2 running AIX, a version of Unix.

Xerox produced a Common Lisp compatibility package on top of Interlisp. This package was
never really a strong success for Xerox, which in the late 1980’s got out of the Lisp business,
licensing its Lisp software to a spinoff started by Xerox called Envos in 1989.

Envos put out a real Common Lisp implementation and sold the InterLisp-D environment. But
Envos went out of business three years after it was founded. What was left of Envos became the
company Venue, which essentially was granted the rights to continue marketing the same software
Envos had been, but without direct funding. The funding was provided by servicing Xerox’s Lisp
customer base (maintenance).
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2.12.4 DARPA and the SAIL Mailing Lists

Right after CLTL1 was published in 1984, ARPA (renamed DARPA) took a real interest in Common
Lisp. They sponsored a community meeting and encouraged further development of Common
Lisp into a full development system, including an object-oriented extension, multitasking, window
systems, graphics, foreign function interfaces, and iteration. It seemed that DARPA wished for a
resurgence of Lisp and was willing to provide some funds to help this purpose.

After the meeting, new mailing lists were set up at SAIL for discussion of these topics and,
though most of the lists were quiet, some witnessed interesting discussions.

2.12.5 The Start of X3J13

In a follow-up meeting one year later—December 1985 in Boston, Massachusetts—an apparently
benign technical meeting was interrupted by a shocking announcement: Common Lisp must be
standardized, DARPA announced, and Robert Mathis, the ISO ADA Convenor, was to head up
this effort.

The reason for this sudden need was that the European Lisp community was planning to launch
their own Lisp standardization effort at ISO to head off the spread of Common Lisp. Mathis, with
his storehouse of international experience, seemed to DARPA the natural choice to head up the
response, and the stunned, confused, and soon-to-be-previously-pastoral Common Lisp group could
think of little else to do but go along.

2.12.6 The March Towards ANSI Common Lisp

The period from Spring 1986 until Spring 1992 was a combination of political wrangling and
interesting Lisp development. As usual, the impetus behind the Lisp development was to increase
the expressive power of Lisp. The political wrangling centered around two different objectives:
within Common Lisp, each individual strived to put his or her mark on the language, and, outside
Common Lisp, various groups tried to minimize the size of Lisp to guarantee its survival—both
academic and commercial.

A few months after the December 1985 meeting there was a meeting at SPARC in Washington
DC to kick off the X3 activities. At this meeting the goals of standardization were discussed, and
the most important topic, which was pushed by DARPA, was whether to merge with the Scheme
activities—the technical issues surrounded the treatment of macros and whether or not there was a
separate namespace for functions separate from ordinary variables. The goals of the new X3 group
(later to become X3J13) were also discussed.

The point about namespaces is important to understanding the debate between Lisp dialect
proponents. A namespace is a mapping between an identifier (string of characters) and its meaning.
In Common Lisp there are a number of namespaces—variables, functions, types, tags, blocks, and
catch tags, among others. If a Lisp has separate namespaces for variables and functions, users are
allowed to use variable names that also name functions, because the evaluation rules specify the
namespace in which to look for the meaning. In a Lisp with a single namespace, the user must
be careful when creating variable names that he isn’t shadowing a function name. This issue is
important for macros, which in effect must carefully decide what a free variable is intended to
mean. Because the variable and function namespaces are where the real problems lie, this debate
is often referred to as the “Lisp-1 versus Lisp-2” debate. A Lisp-1 is a Lisp where functions and
variables are in the same namespace, and a Lisp-2 is a Lisp where they are separate.

The effort to merge the Scheme and Common Lisp communities was launched on two fronts:
One was to try to come up with a solution to the macro problem that a Lisp-1 causes. This problem
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is that with only one namespace it is relatively easier to stumble across an unintended name conflict
leading to incorrect code. The key Common Lisp leaders felt that if the macro problem could be
solved, Common Lisp could survive a transition from Lisp-2 to Lisp-1. The other front was to try
to convince the Scheme community this was a good idea.

On the first front, Gabriel and Kent Pitman produced a report detailing the technical issues
involved in macros, which was published in the journal Lisp and Symbolic Computation (LASC)
[Gabriel, 1988]. Several technical solutions appeared around the same time, the most promising
being described in Kohlbecker’s dissertation [Kohlbecker, 1986b].

On the second front, Gabriel and Will Clinger approached the Scheme community, which
soundly rejected any association with the Common Lisp community.

Sadly, though there were several other attempts to bring the two communities together, there
has never been any serious dialog between the two groups.

By the end of 1986, it was clear that the European Lisp community would eventually produce a
new Lisp dialect, which would be informally called EuLisp, and that the same community intended
to start an ISO effort to standardize this dialect.

EuLisp is a dialect of Lisp defined in layers, with a very small kernel language and increasingly
larger ones, the goal being to have a Common-Lisp-sized layer. EuLisp has an object-oriented
facility, modules, multitasking, and a condition system. It is a Lisp-1.

A condition system is a facility for defining and handling user exceptions and for handling
system exceptions. In Common Lisp, this facility provides a mechanism for executing user-defined
code in the dynamic context of the error.

The most important technical development during this period was the Common Lisp Object
System (CLOS). In 1986 four groups began to vie for defining the object-oriented programming part
of Common Lisp: New Flavors (Symbolics) [Symbolics, 1985], CommonLoops (Xerox) [Bobrow,
1986], Object Lisp (LMI) [Drescher, 1987], and Common Objects [Kempf, 1987]. After a six-month
battle, a group was formed to write the standard for CLOS based on CommonLoops and New
Flavors. This group was David A. Moon (Symbolics), Daniel G. Bobrow (Xerox), Gregor Kiczales
(Xerox), Sonya Keene (Symbolics, a writer), Linda DeMichiel (Lucid), and Gabriel (Lucid). Also,
there was a group of people who were informally in the group: Patrick Dussud (TI), Jim Kempf
(Sun), and Jon L White (Lucid).

The CLOS specification took two years, and the specification was adopted in June of 1988 with
no changes.

CLOS has the following features:

• Multiple inheritance using a linearization algorithm to resolve conflicts and to order methods.
Multiple inheritance provides a mechanism to build new classes by combining mixins, which
are classes that provide some structure and behavior. Programming with multiple inheritance
enables the designer to combine desired behavior without having either to select the closest
existing class and modify it or to start a fresh single inheritance chain.

• Generic functions whose methods are selected based on the classes of all required arguments.
This is in contrast to the message-passing model in which a message is sent to a single object
whose class selects the method to invoke.

• Method combination, which provides the mechanism to take behaviors from component parts
and blend them together. Method combination is an important aspect of multiple inheritance,
because each combined class can provide part of the behavior needed, and the programmer
need not code up a combining method to use existing methods.

• Metaclasses, whose instances are classes and which are used to control the representation of
instances of classes.
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• Meta-objects, which control the behavior of CLOS itself. CLOS can be viewed as a program
written in CLOS. Since any CLOS program can be customized, so can CLOS itself.

• An elaborate object creation and initialization protocol that can be used to provide user
customization of the instance creation, change class, reinitialization, and class redefinition
processes.

During the deliberations of X3J13 a number of other additions were made to Common Lisp: an
iteration facility, a condition system, a better specification of compilation and evaluation semantics,
and a large number of small cleanups.

The X3J13 process was unlike the Scheme process. The Scheme process allowed any person to
veto an addition. The X3J13 process went by majority vote. This allowed a great deal of log-rolling,
and some committee members were eager to put their mark on Common Lisp.

The iteration facility, called LOOP, it consists of a single macro that has an elaborate pseudo-
English or COBOL-like syntax. The debate on this facility was at times intense, especially when
Scott Fahlman was still active in Common Lisp. Because of its non-Lispy syntax, it was (and
remains) easy to ridicule.

The condition system further developed the exception handling capabilities of Common Lisp
by introducing first-class conditions and mechanisms for defining how conditions of certain classes
are to be handled—either automatically or with human intervention. Adoption of this facility was
made easier by the adoption of CLOS, which paved the way for a cleaner formulation of the basic
mechanisms. Nevertheless, the condition system was not completely CLOSified and cleaned up. For
example, clauses that appear syntactically to be method definitions and hence should be selected
based on class specificity are actually treated like cond clauses.

In 1987 ISO created a working group called WG16 to begin the process of standardizing Lisp
at the international level. The two primary contenders were EuLisp and Common Lisp.

The political goal of EuLisp was to displace Common Lisp from Europe. Because US standards
had such a strong influence in Europe, and because the only standards organization with real clout
in Europe was ISO, this route was dictated.

The intellectual goal was a clean, commercial-quality, layered Lisp dialect for the future. EuLisp
appears to have met its goals, and many consider it one of the nicer Lisp definitions, though there
are still no commercial implementations of it.

For five years, the US managed to keep any progress from being made in the ISO committee,
until, in 1992, a compromise was worked out in which, essentially, a near subset of Common Lisp
and of CLOS would form the basis of a kernel Lisp dialect.

In 1988, DARPA called another Lisp meeting to discuss bringing the Scheme and Common
Lisp communities together, but, as with earlier attempts, this failed primarily because the Scheme
community did not want to have anything to do with Common Lisp. Attending this meeting were
Bill Scherlis, Steve Squires, Gabriel, Daniel G. Bobrow, Gerry Sussman, and Scott Fahlman.

In 1989, Scheme began an IEEE standardization process, which culminated in 1991 with both
an IEEE and ANSI standard, the latter after a virtually unannounced public review period. The
structure of the Scheme standards is that the official standard lags the informal Rn Report, so that
the standard corresponds to the Rn−1 Report when the Rn Report is current.

Also in 1989, the first non-intrusive garbage collectors appeared from the companies Lucid and
Franz. The Lucid collector is an ephemeral garbage collector based on a combination of ideas from
Smalltalk generation scavengers and the Symbolics ephemeral garbage collector [Sobalvarro, 1988].

The appearance of these collectors seemed to have the effect of increasing the legitimacy of
stock-hardware Lisp companies to the same or higher level than the Lisp machine companies.
This was because the Lisp machine companies encouraged the belief that stock-hardware Lisps
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could never have the performance—particularly for garbage collection—that the special-purpose-
computer Lisps could have. When this was proven wrong, the Lisp machine companies suffered.

In 1991, the R4 Report included a specification of hygienic macros, the first partially standard-
ized macro facility in Scheme.

As X3J13 progressed and the power of general purpose workstations increased—largely due to
development of fast risc processors—stock hardware Lisp companies dominated, forcing most of
the Lisp machine companies either out of business or out of their leadership position. Also, the
deterioration of the Lisp market and the general decline of the economy in the US combined to
enable the smaller software-based Lisp companies to survive—customers were not willing to buy
expensive “dedicated” computers and then spend money maintaining them.

In April of 1992 X3J13 delivered to X3 SPARC (the authorizing body for X3J13) its draft for
Common Lisp. At the same time, WG16 produced the first draft of its kernel Lisp.

The ANSI draft for Common Lisp is immensely large. One official at X3 SPARC remarked on
seeing it: “It’s bigger than Cobol—much bigger!”

Though this might seem funny, it shows how a process of increasing desire for expressiveness,
intensified attention to getting the details right (even for details that almost never matter), the
need for individuals to make their mark, and a seemingly deliberate blind eye towards commercial
realities can lead to an unintended result—a large, unwieldy language that few can completely
understand.

2.13 Expressiveness

Lisp has proved itself more concerned with expressiveness than anything else. We can see this
by observing that only a person well-versed with how a particular Lisp is implemented can write
efficient programs. Here is a perfectly nice piece of code:

(defun make-matrix (n m)

(let ((matrix ()))

(dotimes (i n matrix)

(push (make-list m) matrix))))

(defun add-matrix (m1 m2)

(let ((l1 (length m1))

(l2 (length m2)))

(let ((matrix (make-matrix l1 l2)))

(dotimes (i l1 matrix)

(dotimes (j l2)

(setf (nth i (nth j matrix))

(+ (nth i (nth j m1))

(nth i (nth j m2)))))))))

The expression to read and write a cell in a matrix looks perfectly harmless and fast as anything.
But it is slow, because nth takes time proportional to the value of its first argument, essentially
CDRing down the list every time it is called. (An experienced Lisp coder would iterate over the
cells of a list rather than over numeric indices, or would use arrays instead of lists.)

Here expressiveness has gone awry. People tend to expect that operations in the language cost a
small unit time, not something complicated to figure out. So, precisely because Lisp is so expressive,
it is very hard to write fast programs, though it is easy to write pretty ones.
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3 Evolution of Some Specific Language Features

In this section we discuss the evolution of some language features that are either unique to Lisp or
uniquely handled by Lisp.

3.1 The Treatment of NIL (and T)

Almost since the beginning, Lisp has used the symbol nil as the distinguished object that indicates
the end of a list (and which is therefore itself the empty list); this same object also serves as the
false value returned by predicates. McCarthy has commented that these decisions were made
“rather lightheartedly” and “later proved unfortunate.” Furthermore, the earliest implementations
established a tradition of using the zero address as the representation of NIL; McCarthy also
commented that “besides encouraging pornographic programming, giving a special interpretation
to the address 0 has caused difficulties in all subsequent implementations” [McCarthy, 1978].

The advantage of using address 0 as the representation of nil is that most machines have a
“jump if zero” instruction or the equivalent, allowing a quick and compact test for the end of a list.
As an example of the implementation difficulties, however, consider the PDP-10 architecture, which
had 16 registers, or “accumulators”, which were also addressable as memory locations. Memory
location 0 was therefore register 0. Because address 0 was nil, the standard representation for
symbols dictated that the right half of register 0 contain the property list for the symbol nil (and
the left half contained the address of other information, such as the character string for the name
“nil”). The implementation tradition thus resulted in tying up a register in an architecture where
registers were a scarce resource.

Later, when MacLisp adopted from Interlisp the convention that (car nil) = (cdr nil) =
nil, register 0 was still reserved; its two halves contained the value 0 so that the car and cdr

operations need not special-case nil. But all operations on symbols had to special-case nil, for it
no longer had the same representation as other symbols. This led to some difficulties for Guy Steele,
who had to find every place in the assembly-language kernel of MacLisp where this mattered.

Nowadays some Common Lisp implementations use a complex system of offset data representa-
tions to avoid special cases for either conses or symbols; every symbol is represented in such a way
that the data for the symbol does not begin at the memory word addressed by a symbol pointer,
but two words after the word addressed. A cons cell consists of the addressed word (the cdr) and
the word after that (the car). In this way the same pointer serves for both nil the symbol and ()

the empty list pseudo-cons whose car and cdr are both nil.
There is a danger in using a quick test for the end of a list; a list might turn out to be improper,

that is, ending in an object that is neither the empty list nor a cons cell. Interlisp split the difference,
giving the programmer a choice of speed or safety [Teitelman, 1978]:

Although most lists terminate in NIL, the occasional list that ends in an atom, e.g.,
(A B . C), or worse, a number or string, could cause bizarre effects. Accordingly, we
have made the following implementation decision:

All functions that iterate through a list, e.g., member, length, mapc, etc., terminate
by an nlistp check, rather than the conventional null-check, as a safety precaution against
encountering data types which might cause infinite cdr loops . . . [their italics]

For users with an application requiring extreme efficiency, [their footnote: A NIL

check can be executed in only one instruction; an nlistp on Interlisp-10 requires about
8, although both generate only one word of code.] we have provided fast versions of
memb, last, nth, assoc, and length, which compile open and terminate on NIL checks
. . .
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Fischer Black commented as early as 1964 on the difference between NIL and () as a matter of
programming style [Black, 1985]. There has been quite a bit of discussion over the years of whether
to tease apart the three roles of the empty list, the false value, and the otherwise uninteresting
symbol whose name is “nil”; such discussion was particularly intense in the Scheme community,
many of whose constituents are interested in elegance and clarity. They regard such constructions
as

(if (car x) (+ (car x) 1))

as bad puns, preferring the more explicit

(if (not (null (car x))) (+ (car x) 1))

The Revised Revised Report on Scheme [Clinger, 1985b] defined three distinct quantities nil

(just another symbol); (), the empty list; and #!false, the boolean false value (along with #!true,
the boolean true value). However, in an interesting compromise, all places in the language that
tested for true/false values regarded both () and #!false as false and all other objects as true.
The report comments:

The empty list counts as false for historical reasons only, and programs should not
rely on this because future versions of Scheme will probably do away with this nonsense.

Programmers accustomed to other dialects of Lisp should beware that Scheme has
already done away with the nonsense that identifies the empty list with the symbol nil.

The Revised3 Report on the Algorithmic Language Scheme [Rees, 1986] shortened #!false and
#!true to #f and #t, and made a remark that is similar but more refined (in both senses):

The empty list counts as false for compatibility with existing programs and imple-
mentations that assume this to be the case.

Programmers accustomed to other dialects of Lisp should beware that Scheme dis-
tinguishes false and the empty list from the symbol nil.

The recently approved IEEE standard for Scheme specifies that #f and #t are the standard
false and true values, and that all values except #f count as true, “including #t, the empty list,
symbols, numbers, strings, vectors, and procedures” [IEEE, 1991]. So the Scheme community has,
indeed, overcome long tradition and completely separated the three notions of the false value, the
empty list, and the symbol nil. Nevertheless the question continues to be debated.

The question of nil was also debated in the design of Common Lisp, and at least one of the
directly contributing implementations, NIL, had already made the decision that the empty list ()
would not be the same as the symbol nil. (A running joke was that NIL (New Implementation
of Lisp) unburdened NIL of its role as the empty list so that it would be free to serve as the name
of the language!) Eventually the desire to be compatible with the past, however crufty [Raymond,
1991], carried the day.

It is worth noting that Lisp implementors have not been tempted to identify nil with the
number 0 (as opposed to the internal address 0), with one notable exception, a Lisp system for
the PDP-11 written in the 1970’s by Richard M. Stallman, in which the number 0 rather than the
symbol nil was used as the empty list and as false. Compare this to the use of 0 and 1 as false
and true in APL [Iverson, 1962], or the use of 0 as false and as the null pointer in C [Kernighan,
1978]. Both of these languages have provoked the same kinds of comments about puns and bad
programming practice that McCarthy made about Lisp.

This may seem to the reader to be a great deal of discussion to expend in this paper on such a
small point of language design. However, the space taken here reflects accurately the proportion of
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time and energy in debate actually expended on this point by the Lisp community over the years.
It is a debate about expressiveness versus cleanliness and about different notions of clarity. Even if
Lisp does not enforce strong typing, some programmers prefer to maintain a type discipline in their
code, writing (if (not (null (car x))) . . . ) instead of (if (car x) . . . ). Others contend
that such excess clutter detracts from clarity rather than improving it.

3.2 Iteration

While Lisp, according to its P.R., has traditionally used conditionals and recursively defined func-
tions as the principal means of expressing control structure, there have in fact been repeated and
continuing attempts to introduce various syntactic devices to make iteration more convenient. This
may have been driven by the desire to emulate styles of programming found in ALGOL-like lan-
guages and by the fact that, although some compilers would sometimes optimize tail-recursive calls,
the programmer could not rely on this until the era of good Scheme and Common Lisp compilers
in the 1980’s, so performance was an issue.

Perhaps the simplest special iteration construct is exemplified by the first do loop introduced
into MacLisp (in March, 1969):

(do var init step test . body)

means the same as

(let ((var init))
(block (when test (return))

(progn . body)
(setq var step)))

Thus the Fortran DO loop

DO 10 J=1,100

IF (A(J) .GT. 0) SUM = SUM + A(J)

10 CONTINUE

could be expressed as

(DO J 1 (+ J 1) (> J 100)

(WHEN (PLUSP (A J))

(SETQ TOTAL (+ TOTAL (AREF A J)))))

(except, of course, that Lisp arrays are usually 0-origin instead of 1-origin, so

(DO J 0 (+ J 1) (= J 100)

(WHEN (PLUSP (A J))

(SETQ TOTAL (+ TOTAL (AREF A J)))))

is actually a more idiomatic rendering).
This “old-style” MacLisp do loop was by no means the earliest iteration syntax introduced to

Lisp; we mention it first only because it is the simplest. The Interlisp CLISP iterative statements
were the earliest examples of the more typical style that has been reinvented ever since:

(FOR J←0 TO 99 SUM (A J) WHEN (PLUSP (A J)))
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This returns the sum as its value rather than accumulating it into the variable TOTAL by side effect.
(See section 3.5.1 for further discussion of Algol-style syntax.)

Macros or other code-transformation facilities such as CLISP make this kind of extension par-
ticularly easy. While the effort in Interlisp was centralized, in other Lisp dialects (MacLisp not
excepted) there have been repeated instances of one local wizard or another cobbling up some
fancy syntax for iterative processes in Lisp. Usually it is characterized by the kind of pseudo-
English keywords found in the Algol-like languages, although one version at Stanford relied more
on the extended-ASCII character set available on its home-grown keyboards. This led to a prolifer-
ation of closely related syntaxes, typically led off by the keyword FOR or LOOP, that have attracted
many programmers but turned the stomaches of others as features accreted.

Because of these strong and differing aesthetic reactions to iteration syntax, the question of
whether to include a loop macro became a major political battle in the early design of Common
Lisp, with the Lisp Machine crowd generally in favor of its adoption and Scott Fahlman adamantly
opposing it, seconded perhaps more weakly by Guy Steele. The result was a compromise. The
first definition of Common Lisp [Steele, 1984] included a loop macro with absolutely minimal
functionality: it permitted no special keywords, good only for expressing endless repetition of a
sequence of subforms. It was understood to be a placeholder, reserving the name loop for possible
extension to some full-blown iteration syntax. ANSI committee X3J13 did eventually agree upon
and adopt a slightly cleaned-up version of loop [Steele, 1990c] based on the one used at MIT and
on Lisp Machines (which was not very much different from the one in Interlisp).

In the process X3J13 also considered two other approaches to iteration that had cropped up
in the meantime: series (put forward by Richard Waters) and generators and gatherers (by Pavel
Curtis and Crispin Perdue) [Steele, 1990c; Waters, 1984; Waters, 1989a; Waters, 1989b]. The
example Fortran DO loop shown above would be rendered using series as

(collect-sum (choose-if #’plusp

(#M(lambda (j) (a j))

(scan-range :start 0 :below 100)))

This is a functional style, reminiscent of APL:

+/(T>0)/T←A[ι100]

The definition of the series primitives and their permitted compositions is cleverly constrained so
that they can always be compiled into efficient iterative code without the need for unboundedly large
intermediate data structures at run time. Generators and gatherers are a method of encapsulating
series (at the cost of run-time state) so that they look like input or output streams, respectively,
that serve as sources or sinks of successive values by side effect. Thus

(generator (choose-if #’plusp

(#M(lambda (j) (a j))

(scan-range :start 0 :below 100)))

produces an object that delivers successive positive numbers resulting from (A 0), (A 1), etc., when
given to the extraction function next-in. This reminds one of the possibilities lists of Conniver
[McDermott, 1974] or of the generators of Alphard [Shaw, 1981], though we know of no direct
connection.

After much debate, X3J13 applauded the development of series and generators but rejected
them for standardization purposes, preferring to subject them first to the test of time.

One other iteration construct that deserves discussion is the MacLisp “new-style” do loop,
introduced in March, 1972:
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(do ((var1 init1 step1)
(var2 init2 step2)
...

(varn initn stepn))
(test . result)

. body)

This evaluates all the init forms and binds the corresponding variables var to the resulting values.
It then iterates the following sequence: if evaluating the test form produces a true value, evaluate
the result forms and return the value of the last one; otherwise execute the body forms in sequence
and repeat.

The beauty of this construct is that it allows the initialization and stepping of multiple variables
without use of kitschy pseudo-English keywords. The awful part is that it uses multiple levels of
parentheses as delimiters and you have to get them right or endure strange behavior; only a diehard
Lisper could love such a syntax.

Arguments over syntax aside, there is something to be said for recognizing that a loop that
steps only one variable is pretty useless, in any programming language. It is almost always the
case that one variable is used to generate successive values while another is used to accumulate a
result. If the loop syntax steps only the generating variable, then the accumulating variable must
be stepped “manually” by using assignment statements (as in the Fortran example) or some other
side effect. The multiple-variable do loop reflects an essential symmetry between generation and
accumulation, allowing iteration to be expressed without explicit side effects:

(define (factorial n)

(do ((j n (- j 1))

(f 1 (* j f)))

((= j 0) f)))

It is indeed not unusual for a do loop of this form to have an empty body, performing all its real
work in the step forms.

While there is a pretty obvious translation of this do construct in terms of prog and setq, there
is also a perspicuous model free of side effects:

(labels ((the-loop

(lambda (var1 var2 ... varn)
(cond (test . result)

(t (progn . body)
(the-loop step1 step2 ... stepn))))))

(the-loop init1 init2 ... initn))

Indeed, this is equivalent to the definition of do adopted by Scheme [IEEE, 1991], which resolves
an outstanding ambiguity by requiring that the variables be updated by binding rather than by
side effect. Thus the entire iteration process is free of side effects. With the advent of good Scheme
compilers such as ORBIT [Kranz, 1986] and good Common Lisp compilers, compiling the result
of this side-effect-free translation produces exactly the same efficient machine-language code one
would expect from the PROG-and-SETQ model.

3.3 Macros

Macros appear to have been introduced into Lisp by Timothy P. Hart in 1963 in a short MIT AI
Memo [Hart, 1963], which we quote here in its entirety [request for permission is pending]:



    

Gabriel and Steele, Evolution of Lisp 41

In LISP 1.5 special forms are used for three logically separate purposes: a) to reach
the alist, b) to allow functions to have an indefinite number of arguments, and c) to
keep arguments from being evaluated.

New LISP interpreters can easily satisfy need (a) by making the alist a SPECIAL-
type or APVAL-type entity. Uses (b) and (c) can be replaced by incorporating a MACRO

instruction expander in define. I am proposing such an expander.

1. The property list of a macro definition will have the indicator MACRO followed by
a function of one argument, a form beginning with the macro’s name, and whose
value will replace the original form in all function definitions.

2. The function macro[l] will define macros just as define[l] defines functions.

3. define will be modified to make macro expansions.

Examples:

1. The existing FEXPR csetq may be replaced by the macro definition:

MACRO ((

(CSETQ (LAMBDA (FORM) (LIST (QUOTE CSET) (LIST (QUOTE QUOTE)

(CADR FORM)) (CADDR FORM))))

))

2. A new macro stash will generate the form found frequently in PROG’s:

x := cons[form;x]

Using the macro stash, one might write instead of the above:

(STASH FORM X)

Stash may be defined by:

MACRO ((

(STASH (LAMBDA (FORM) (LIST (QUOTE SETQ) (CADAR FORM)

(LIST (CONS (CADR FORM) (CADAR FORM))) )))

))

3. New macros may be defined in terms of old. Enter is a macro for adding a new
entry to a table (dotted pairs) stored as the value of a program variable.

enter[form] ≡
MACRO

list[STASH;list[CONS;cadr[form];

caddr[form];cadddr[form]]

Incidentally, use of macros will alleviate the present difficulty resulting from the
90 LISP compiler’s only knowing about those fexprs in existence at its birth.

The macro defining function macro is easily defined:

macro[l] ≡ deflist[l;MACRO]

The new define is a little harder:

define[l] ≡ deflist[mdef[l];EXPR]

mdef[l] ≡ [

atom[l] → l;

eq[car[l];QUOTE] → l;
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member[car[l];(LAMBDA LABEL PROG)] →
cons[car[l];cons[cadr[l];mdef[caddr[l]]]];

get[car[l];MACRO] → mdef[get[car[l];MACRO][l]];

T → maplist[l;λ[[j];mdef[car[j]]]]]

4. The macro for select illustrates the use of macros as a means of allowing functions
of an arbitrary number of arguments:

select[form] ≡
MACRO

λ[[g];
list[list[LAMBDA;list[g];cons[COND;

maplist[cddr[form];λ[[l];
[null[cdr[l]] → list[T;car[l]];

T → list[list[EQ;g;caar[l]];cadar[l]]]]]

]];cadr[form]]][gensym[]]

There are a number of points worth noting about Hart’s proposal. It allows the macro expansion
to be computed by an arbitrary user-defined function, rather than relying on substitution into a
template, as so many other macro processors of the day did. He noted that macros, unlike fexprs,
require no special knowledge for each one on the part of the compiler. Macros are expanded at
function definition time, rather than on the fly as a function is interpreted or compiled. Note the
switching off between S-expression and M-expression syntax. The STASH macro is the equivalent
of the PUSH macro found in Interlisp [Teitelman, 1978] and later in Common Lisp by way of Lisp-
Machine Lisp; the verb “stash” was commonly used in the 1960’s. There are two minor bugs in the
definition of mdef: first, PROG is not properly handled, because it fails to process all the statements
in a PROG form; second, COND is not handled specially, which can lead to mistakes if a variable has
the same name as a macro and the variable is used as the test part of a COND clause. (Perhaps this
was an oversight, or perhaps it never occurred to Hart that anyone would have the bad taste to use
a name for two such different purposes.) The last example illustrates the technique of generating
a new name for a temporary binding to avoid multiple evaluations of an argument form. Finally,
Hart achieved an amazing increase in expressive power with a deceptively simple change to the
language, by encouraging the user to exploit the power of Lisp to serve as its own metalanguage.

Hart’s macro language was subsequently used in the Lisp system for the Q-32 [Saunders,
1985b]. Inspection of the MDEF function in the compiler code [Saunders, 1985a, p. 311] reveals
that the error in processing PROG statements had been repaired: mdef[caddr[l]] was replaced by
mdef[cddr[l]]. (In fact, this may be what Hart had originally intended; in [Hart, 1963] the “a”
appears to have been written in by hand as a correction over another letter. Perhaps the typist had
made the typographical error mdef[ccddr[l]] and subsequently a wrong correction was made.)
Unfortunately, the use of mdef[cddr[l]] has its own problems: a variable whose value is returned
by a LAMBDA expression or a tag at the head of a PROG might be incorrectly recognized as the
name of a macro, thereby treating the body of the LAMBDA or PROG form as a macro call. Picky,
picky—but nowadays we do try to be careful about that sort of thing.

A similar sort of computed macro appeared in the MIT PDP-6 Lisp, but macros calls were
expanded on the fly as they were encountered by the compiler or the interpreter. In the case of
the interpreter, if an explicitly named function in a function call form turned out to have a MACRO

property on its property list (rather than one of the function indicators EXPR, SUBR, LSUBR, FEXPR,
or FSUBR) then the function definition was given the original macro call form as an argument and
was expected to return another form to be evaluated in place of the call. The example given in the
PDP-6 Lisp memo [PDP-6 Lisp, 1967] was
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(DEFPROP CONSCONS

(LAMBDA (A)

(COND ((NULL (CDDR A)) (CADR A))

((LIST (QUOTE CONS)

(CADR A)

(CONS (CAR A)

(CDDR A)))))

MACRO)

This defined a macro equivalent in effect to the Common Lisp function list*. Note the use of
DEFPROP to define a function, the use of QUOTE rather than a single quote character, and the omission
of the now almost universally customary T in the second COND clause.

An advantage of this scheme was that one could define some functions that use macros and
later define (or redefine) the macro; a macro call would always use the latest macro definition. A
drawback, however, was that the interpreter must constantly re-expand the same macro call every
time it is repeated, reducing speed of execution. A device called displacing macros soon became
common among MacLisp users; it involved the utility function DISPLACE:

(DEFUN DISPLACE (OLD NEW)

(RPLACA OLD (CAR NEW))

(RPLACD OLD (CDR NEW))

OLD)

One would then write

(DEFPROP CONSCONS

(LAMBDA (A)

(DISPLACE A

(COND ...)))

MACRO)

The effect was to destructively alter the original list structure of the macro call so as to replace it
with its expansion.

This all-too-clever trick had drawbacks of its own. First, it failed if a macro needed to expand to
an atom (such as a number or variable reference); macro writers learned to produce (PROGN FOO)

instead of FOO. Second, if a macro were redefined after a call to it had been displaced, subsequent
executions of the call would not use the new definition. Third, the code was modified; pretty-
printing code that originally contained a macro call would display the expansion, not the original
macro call. This last drawback was tolerable only because the MacLisp environment was so firmly
file-based: displacing macros modified only the in-core copy of a program; it did not affect the
master definition, which was considered to be the text in some file. Displacing macros of this kind
would have been intolerable in Interlisp.

Around 1978, Lisp Machine Lisp introduced an improvement to the displacement technique:

(defun displace (old new)

(rplacd new (list (cons (car old) (cdr old)) new))

(rplaca old ’si:displaced)

new)

(defmacro si:displaced (old new) new)
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The idea is that the macro call is displaced by a list (si:displaced macro-call expansion). The
macro si:displaced transparently returns its second argument form, so everything behaves as if
the expansion itself had replaced the macro call. While expanding the call to si:displaced is not
free, it is presumably cheaper than continually re-expanding the original macro call (if not, then
the macro writer shouldn’t use displace). The Lisp Machine pretty-printer recognizes calls to
si:displace and prints only the original macro call.

BBN Lisp [Teitelman, 1971] had three kinds of macro: open, computed, and substitution (de-
scribed below). A macro definition was stored in the property list of its name under the MACRO

property; the form of the property value determined which of three types of macro it was. Orig-
inally all three types were effective only in compiled code. Eventually, however, after BBN Lisp
became Interlisp [Teitelman, 1978], a DWIM hack called MACROTRAN was added that made all
three types of macro effective in interpreted code. If interpreting a function call resulted in an
“undefined function” error, the DWIM system would step in. MACROTRAN would gain control,
expand the macro, and evaluate the resulting expansion. The Interlisp manual duly notes that
interpreted macros will work only if DWIM is enabled. Contrast this with the MIT approach
of building macros directly into the interpreter (as well as the compiler) as a primitive language
feature.

A BBN-Lisp open macro simply caused the macro name to be replaced by a lambda expression,
causing the function to be compiled “open” or in-line. Here is an open macro definition for ABS:

(LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS X))))

Of course this has exactly the same form as a function definition.
A BBN-Lisp computed macro was similar to the kind in MIT PDP-6 Lisp, except that the

expander function received the CDR of the macro call rather than the entire macro call. Here is a
computed macro for LIST:

(X (LIST (QUOTE CONS)

(CAR X)

(AND (CDR X)

(CONS (QUOTE LIST)

(CDR X]

The leading X is the name of a variable to be bound to the CDR of the macro call form. Note also
the use of a closing superbracket in the definition (see section 2.3).

A BBN-Lisp substitution macro consisted of a simple pattern (a parameter list) and a substi-
tution template; subforms of the macro call were substituted for occurrences in the template of
corresponding parameter names. A substitution macro for ABS would look like this:

((X) (COND ((GREATERP X 0) X) (T (MINUS X))))

However, the call (ABS (FOO Z)) would be expanded to

(COND ((GREATERP (FOO Z) 0) (FOO Z)) (T (MINUS (FOO Z))))

leading to multiple evaluations of (FOO Z), which would be unfortunate if (FOO Z) were an
expensive computation or had side effects. By way of contrast, with an open macro the call
(ABS (FOO Z)) would be expanded to

((LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS X)))) (FOO Z))
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which would evaluate (FOO Z) exactly once.
Despite the care sometimes required to avoid multiple evaluation, however, the pattern/template

methodology for defining macros is very convenient and visually appealing. Indeed, pattern match-
ing and template methodologies were a pervasive topic in the development of languages for Artificial
Intelligence throughout the 1960’s and 1970’s; see section 4. We will return to the topic of template-
based macros below.

Muddle [Galley, 1975], not surprisingly, had a macro facility very much like that of PDP-6
Lisp, with one slight difference. The macro expansion function, rather than being called with the
macro form as its argument, was applied to the CDR of the form. This allowed Muddle’s complex
argument-list keywords to come into play, allowing certain simple kinds of pattern matching as for
Interlisp’s substitution macros:

<DEFMAC INC (ATM "OPTIONAL" (N 1))

<FORM SET .ATM <FORM + <FORM LVAL .ATM> .N>>>

It was nevertheless necessary to laboriously construct the result as for a computed macro. The
result of expanding <INC X> would be <SET X <+ .X 1>> (note that in Muddle .X is merely a
readmacro abbreviation for <LVAL X>, the local value of X).

As MacLisp grew out of PDP-6 Lisp, the MacLisp community diversified, producing a variety of
methodologies for defining macros. Simple macros such as INC were conceptually straightforward
to write, if a bit cumbersome (certainly more clumsy than in Muddle or Interlisp):

(DEFUN INC MACRO (X)

(LIST ’SETQ

(CADR X)

(LIST ’PLUS

(CADR X)

(COND ((CDDR X) (CADDR X)) (T 1)))))

Note that the lack of automatic decomposition (“destructuring”) of the argument forms leads to
many uses of CAR, CDR, and COND within the code that constructs the result. One can use LET to
separate the destructuring from the construction:

(DEFUN INC MACRO (X)

(LET ((VAR (CADR X))

(N (COND ((CDDR X) (CADDR X)) (T 1)))

(LIST ’SETQ VAR (LIST ’PLUS VAR N)))

but LET—itself a macro first invented and reinvented locally at each site—was a late-comer to the
MacLisp world; according to Lisp Archive, it was retroactively absorbed into PDP-10 MacLisp from
Lisp-Machine Lisp in 1979 at the same time as DEFMACRO and the complex Lisp Machine DEFUN

argument syntax. About the best one could do during the 1970’s was to use a LAMBDA expression:

(DEFUN INC MACRO (X)

((LAMBDA (VAR N)

(LIST ’SETQ VAR (LIST ’PLUS VAR N))

(CADR X)

(COND ((CDDR X) (CADDR X)) (T 1))))

and many programmers found this none too attractive. As a result, the writing of complex macros
was a fairly difficult art, and wizards developed their own separate styles of macro definition.

To see how easily this can get out of hand, consider a macro for a simple FOR loop. A typical
use would be this:
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(for a 1 100

(print a)

(print (* a a)))

This should expand to

(do a 1 (+ a 1) (> a 100)

(print a)

(print (* a a)))

This is a trivial syntactic transformation, simple but convenient, defining a Fortran–DO-loop–like
syntax in terms of the slightly more general “old-style” MacLisp DO loop (see section 3.2). In the
MacLisp of the early 1970’s one might define it as follows:

(defun for macro (x)

(cons ’do

(cons (cadr x)

(cons (caddr x)

(cons (list ’+ (cadr x) 1)

(cons (list ’> (cadr x) (cadddr x))

(cddddr x)))))))

That’s a lot to write for such a simple transformation.
Eventually the gurus at various MacLisp sites developed dozens of similar but not quite compat-

ible macro-defining macros. It was not unusual for several such packages to be in use at the same
site, with the adherents of each sect using whatever their wizard had developed. Such packages
usually included tools for destructuring argument forms and for constructing result forms. The
tools for constructing result forms fell into two major categories: substitution and pseudo-quoting.
Substitution techniques required separate mention of certain symbols in a template that were to be
replaced by specified values. Pseudo-quoting allowed the code to compute a replacement value to
occur within the template itself; it was called pseudo-quoting because the template was surrounded
by a call to an operator that was “just like quote” except for specially marked places within the
template.

Macros took a major step forward with Lisp-Machine Lisp, which consolidated the vari-
ous macro-defining techniques into two standardized features that were adopted throughout the
MacLisp community and eventually into Common Lisp. The macro-defining operator DEFMACRO

provided list-structure destructuring to arbitrary depth; the backquote feature provided a conve-
nient and concise pseudo-quoting facility. Here is the definition of the FOR macro using DEFMACRO

alone:

(defmacro for (var lower upper . body)

(cons ’do

(cons var

(cons lower

(cons (list ’+ var 1)

(cons (list ’> var upper)

body))))))

Notice that we can name the parts of the original form. Using the backquote pseudo-quoting syntax,
which makes a copy of a template, filling in each place marked by a comma with the value of the
following expression, we get a very concise and easy-to-read definition:
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(defmacro for (var lower upper . body)

‘(do ,var ,lower (+ ,var 1) (> ,var ,upper) ,@body))

Note the use of ,@ to indicate splicing.
The backquote syntax was particularly powerful when nested. This occurred primarily within

macro-defining macros; because such were coded primarily by wizards, the ability to write and
interpret nested backquote expressions was soon surrounded by a certain mystique. Alan Bawden
of MIT acquired a particular reputation as backquote-meister in the early days of the Lisp Machine.

Backquote and DEFMACRO made a big difference. This leap in expressive power, made available
in a standard form, began a new surge of language extension because it was now much easier to
define new language constructs in a standard, portable way so that experimental dialects could be
shared. Some, including David Moon, have opined that the success of Lisp as a language designer’s
kit is largely due to the ability of the user to define macros that use Lisp as the processing language
and list structure as the program representation, making it easy to extend the language syntax and
semantics. In 1980 Kent Pitman wrote a very good summary of the advantages of macros over
FEXPR’s in defining new language syntax [Pitman, 1980].

Not every macro was easy to express in this new format, however. Consider the INC macro
discussed above. As of November 1978, the Lisp Machine DEFMACRO destructuring was not quite
rich enough to handle “optional” argument forms:

(DEFUN INC MACRO (VAR . REST)

‘(SETQ ,VAR (+ ,VAR ,(IF REST (CAR REST) 1))))

The optional part must be handled with an explicitly programmed conditional (expressed here using
IF, which was itself introduced into Lisp-Machine Lisp, probably under the influence of Scheme,
as a macro that expanded into an equivalent COND form). This deficiency was soon noticed and
quickly remedied by allowing DEFMACRO to accept the same complex lambda-list syntax as DEFUN:

(DEFUN INC MACRO (VAR &OPTIONAL (N 1))

‘(SETQ ,VAR (+ ,VAR ,N)))

This occurred in January 1979, according to Lisp Archive, at which time MacLisp absorbed
DEFMACRO and DEFUN with &-keywords from Lisp-Machine Lisp.

An additional problem was that repetitive syntax, of the kind that might be expressed in
extended BNF with a Kleene star, was not captured by this framework and had to be programmed
explicitly. Contemplate this simple definition of LET:

(defmacro let (bindings . body)

‘((lambda ,@(mapcar #’car bindings) ,@body)

,@(mapcar #’cadr bindings)))

Note the use of MAPCAR for iterative processing of the bindings. This difficulty was not tackled by
Lisp-Machine Lisp or Common Lisp; in that community DEFMACRO with &-keywords is the state of
the art today. Common Lisp did, however, generalize DEFMACRO to allow recursive nesting of such
lambda-lists.

Further development of the theory and practice of Lisp macros was carried forward primarily by
the Scheme community, which was interested in scoping issues. Macros are fraught with the same
kinds of scoping problems and accidental name capture that had accompanied special variables.
The problem with Lisp macros, from the time of Hart in 1963 to the mid-1980’s, is that a macro call
expands into an expression that is composed of symbols that have no attached semantics. When
substituted back into the program, a macro expansion could conceivably take on a quite surprising
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meaning depending on the local environment. (Macros in other languages—the C preprocessor
[Kernighan, 1978; Harbison, 1991] is one example—have the same problem if they operate by
straight substitution of text or tokens.)

One practical way to avoid such problems is for the macro writer to try to choose names that
the user is unlikely to stumble across, either by picking strange names such as %%foo%% (though it
is surprising how often great minds will think alike), or by using gensym (as Hart did in his select
example, shown above), or by using multiple obarrays or packages to avoid name clashes. However,
none of these techniques provides an iron-glad guarantee. Steele pointed out that careful use of
thunks could provably eliminate the problem, though not in all situations [Steele, 1978a].

The proponents of Scheme regarded all of these arrangements as too flawed or too clumsy for
“official” adoption into Scheme. The result was that Scheme diversified in the 1980’s. Nearly every
implementation had some kind of macro facility but no two were alike. Nearly everyone agreed that
macro facilities were invaluable in principle and in practice but looked down upon each particular
instance as a sort of shameful family secret. If only The Right Thing could be found! This question
became more pressing as the possibility of developing a Scheme standard was bandied about.

In the mid-1980’s two new sorts of proposals were put forward: hygienic macros and syntactic
closures. Both approaches involve the use of special syntactic environments to ensure that references
are properly matched to definitions. A related line of work allows the programmer to control the
expansion process by explicitly passing around and manipulating expander functions [Dybvig, 1986].
All of these were intended as macro facilities for Scheme, previous methods being regarded as too
deeply flawed for adoption into such an otherwise elegant language.

Hygienic macros were developed in 1986 by Eugene Kohlbecker with assistance from Daniel
Friedman, Matthias Felleisen, and Bruce Duba [Kohlbecker, 1986a]. The idea is to label the
occurrences of variables with a tag indicating whether it appeared in the original source code or
was introduced as a result of macro expansion; if multiple macro expansions occur, the tag must
indicate which expansion step was involved. The technique renames variables so that a variable
reference cannot refer to a binding introduced at a different step.

Kohlbecker’s Ph.D. dissertation [Kohlbecker, 1986b] carried this a step further by proposing a
pattern matching and template substitution language for defining macros; the underlying mech-
anism automatically used hygienic macro expansion to avoid name clashes. The macro-defining
language was rich enough to express a wide variety of useful macros, but provided no facility for
the execution of arbitrary user-specified Lisp code; this restriction was thought necessary to avoid
subversion of the guarantee of good hygiene. This little language is interesting in its own right.
While not as general as the separate matching and substitution facilities of DEFMACRO and backquote
(with the opportunity to perform arbitrary computations in between), it does allow for optional
and repetitive forms by using a BNF-like notation, and allows for optional situations by permitting
multiple productions and using the first one that matches. For example, INC might be defined as

(extend-syntax (inc) ()

((inc x) (inc x 1))

((inc x n) (setq x (+ x n))))

and LET as

(extend-syntax (let) ()

((let ((var value) ...) body ...)

((lambda (var ...) body ...) value ...)))

The ellipsis “...” serves as a kind of Kleene star. Note the way in which variable-value pairs are
implicitly destructured and rearranged into two separate lists in the expansion.
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The first list given to extend-syntax is a list of keywords that are part of the macro syntax
and not to be tagged as possible variable references. The second list mentions variables that may
be introduced by the macro expansion but are intended to interact with the argument forms. For
example, consider an implementation (using the Scheme call-with-current-continuation primitive)
of a slight generalization of the n+ 1

2 loop attributed to Dahl [Knuth, 1974]; it executes statements
repeatedly until its while clause (if any) fails or until exit is used.

(extend-syntax (loop while repeat) (exit)

((loop e1 e2 ... repeat)

(call/cc (lambda (exit)

((label foo

(lambda () e1 e2 ... (foo)))))))

((loop e1 ... while p e2 ... repeat)

(call/cc (lambda (exit)

((label foo

(lambda () e1 ...

(unless p (exit #f))

e2 ...

(foo))))))))

In this example loop, while, and repeat are keywords and should not be confused with possible
variable references; exit is bound by the macro but is intended for use in the argument forms of
the macro call. The name foo is not intended for such use, and the hygienic macro expander will
rename it if necessary to avoid name clashes. (Note that you have to try hard to make a name
available; the default is to play it safe, which makes extend-syntax easier and safer for novice
macro writers to use.) Note the use of the idiom “e1 e2 ...” to require that at least one form is
present if there is no while clause.

Syntactic closures were proposed in 1988 by Alan Bawden and Jonathan Rees [Bawden, 1988].
Their idea bears a strong resemblance to the expansion-passing technique of Dybvig, Friedman,
and Haynes [Dybvig, 1986] but is more general. Syntactic contexts are represented not by the
automatically managed tags of hygienic macro expansion but by environment objects; one may
“close” a piece of code with respect to such a syntactic environment, thereby giving the macro
writer explicit control over the correspondence between one occurrence of a symbol and another.
Syntactic closures provide great power and flexibility but put the burden on the programmer to
use them properly.

In 1990, William Clinger (who used to be at Indiana University) joined forces with Rees to
propose a grand synthesis that combines the benefits of hygienic macros and syntactic closures,
with the added advantage of running in linear rather than quadratic time. Their technique is called,
appropriately enough, “macros that work” [Clinger, 1991]. The key insight may be explained by
analogy to reduction in the lambda calculus. Sometimes the rule of α-conversion must be applied to
rename variables in a lambda-calculus expression so that a subsequent β-reduction will not produce
a name clash. One cannot do such renaming all at once; it is necessary to intersperse renaming with
the β-reductions, because a β-reduction can make two copies of a lambda-expression (hence both
bind the same name) and bring the binding of one into conflict with that of the other. The same
is true of macros: it is necessary to intersperse renaming with macro expansion. The contribution
of Clinger and Rees was to clarify this problem and provide a fast, complete solution.

The Scheme standard [IEEE, 1991] was adopted without a macro facility, so confusion still
officially reigns on this point. Macros remain an active research topic.
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Why are macros so important to Lisp programmers? Not merely for the syntactic convenience
they provide, but because they are programs that manipulate programs, which has always been a
central theme in the Lisp community. If FORTRAN is the language that pushes numbers around,
and C is the language that pushes characters and pointers around, then Lisp is the language that
pushes programs around. Its data structures are useful for representing and manipulating program
text. The macro is the most immediate example of a program written in a metalanguage. Because
Lisp is its own metalanguage, the power of the entire programming language can be brought to
bear on the task of transforming program text.

By comparison, the C preprocessor is completely anemic; the macro language consists entirely
of substitution and token concatenation. There are conditionals, and one may conditionally define
a macro, but a C macro may not expand into such a conditional. There is neither recursion nor
metarecursion, which is to say that a C macro can neither invoke itself nor define another macro.

Lisp users find this laughable. They are very much concerned with the programming process
as an object of discourse and an object of computation, and they insist on having the best possible
means of expression for this purpose. Why settle for anything less than the full programming
language itself?

3.4 Numerical Facilities

In Lisp 1.6 and through PDP-6 Lisp, most Lisp systems offered at most single-word fixnums (in-
tegers) and single-word flonums (floating-point numbers). (PDP-1 Lisp [Deutsch, 1985] had only
fixnums; apparently the same is true of the M-460 Lisp [Hart, 1985]. Lisp 1.5 on the 7090 had
floating-point [McCarthy, 1962], as did Q-32 Lisp [Saunders, 1985b] and PDP-6 Lisp [PDP-6 Lisp,
1967].)

We are still a little uncertain about origin of bignums (a data type that uses a variable amount of
storage so as to represent arbitrarily large integer values, subject to the total size of the heap, which
is where bignums are stored). They seem to have appeared in MacLisp and Stanford Lisp 1.6 at
roughly the same time, and perhaps also in Standard Lisp. They were needed for symbolic algebra
programs such as REDUCE [Hearn, 1971] and MACSYMA [Mathlab Group, 1977]. Nowadays the
handling of bignums is a distinguishing feature of Lisp, though not an absolute requirement. Both
the Scheme Standard [IEEE, 1991] and Common Lisp [Steele, 1990c] require them. Usually the
algorithms detailed in Knuth Volume 2 are used [Knuth, 1969; Knuth, 1981]. Jon L White wrote
a paper about a set of primitives that allow one to code most of bignum arithmetic efficiently in
Lisp, instead of having to code the whole thing in assembly language [White, 1986].

There is also a literature on BIGFLOAT arithmetic. It has been used in symbolic algebra
systems [Mathlab Group, 1977], but has not become a fixture of Lisp dialects. Lisp is often used as
a platform for this kind of research because having bignums gets you 2/3 of the way there [Boehm,
1986; Vuillemin, 1988]. The MacLisp functions HAULONG and HAIPART were introduced to support
Macsyma’s bigfloat arithmetic; these became the Common Lisp functions INTEGER-LENGTH and (by
way of Lisp-Machine Lisp) LDB.

In the 1980’s the developers of Common Lisp grappled with the introduction of the IEEE
floating-point standard [IEEE, 1985]. (It is notable that, as of this writing, most other high-level
programming languages have not grappled seriously with the IEEE floating-point standard. Indeed,
ANSI X3J3 (FORTRAN) rejected an explicit request to do so.)

While Lisp is not usually thought of as a numerical programming language, there were three
strong influences in that direction: MACSYMA, the S-1 project, and Gerald Sussman.

The first good numerical Lisp compiler was developed for the MACSYMA group [Golden, 1970;
Steele, 1977c; Steele, 1977e]; it was important to them and their users that numerical code be both
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fast and compact. The result was a Lisp compiler that was competitive with the DEC PDP-10
FORTRAN compiler [Fateman, 1973].

The S-1 was initially intended to be a fast signal processor. One of the envisioned applications
was detection of submarines, which seemed to require a mix of numerical signal processing and
artificial intelligence techniques. The project received advice from W. Kahan in the design of its
floating-point arithmetic, so it ended up being quite similar to the eventual IEEE standard. It
seemed appropriate to refine the techniques of the MacLisp compiler to produce good numerical
code in S-1 Lisp [Brooks, 1982b]. The S-1 offered four different floating-point formats (18, 36, 72,
and 144 bits) [Correll, 1979]. Influenced by S-1 Lisp, Common Lisp provides an expanded system
of floating-point data types to accommodate such architectural variation.

The inclusion of complex numbers in Common Lisp was also an inheritance from the S-1. This
was something of a sticking point with Scott Fahlman. A running joke was an acceptance test
for nascent Common Lisp implementations developed by Guy Steele. It was in three parts. First
you type T; if it responds T, it passes part 1. Second, you define the factorial function and then
calculate

(/ (factorial 1000) (factorial 999))

If it responds 1000, it passes part 2. Third, you try (atanh -2). If it returns a complex number,
it passes; extra credit if it returns the correct complex number. It was a long time before any
Common Lisp implementation passed the third part. Steele broke an implementation or two on
the trade show floor with this three-part test.

Gerald Sussman and his students (including Gerald Roylance and Matthew Halfant) became
interested in numerical applications and in the use of Lisp to generate and transform numerical
programs [Sussman, 1988; Roylance, 1988]. Sussman also spent a fair amount of time at MIT
teaching Lisp to undergraduates. Sussman thought it was absolutely crazy to have to tell students
that the quotient of 10.0 and 4.0 was 2.5 but the quotient of 10 and 4 was 2. Of course, nearly
all other programming languages have the same problem (Pascal [Jensen, 1974] and its derivatives
being notable exceptions), but that is no excuse; Lisp aspires to better things, and centuries of
mathematical precedent should outweigh the few decades of temporary aberration in the field of
computers. At Sussman’s urging, the / function was defined to return rationals when necessary,
so (/ 10 4) in Common Lisp produces 5/2. (This was not considered a radical change to the
language. Rational numbers were already in use in symbolic algebra systems. The developers of
Common Lisp were simply integrating into the language functionality frequently required by their
clients, anyway.)

All this provoked another debate, for in MacLisp and its descendants the slash was the character-
quoter; moreover, backslash was the remainder operator. The committee eventually decided to swap
the roles of slash and backslash, so that slash became alphabetic and backslash became the character
quoter, thus allowing the division operation to be written “/” instead of “//” and allowing rational
numbers to be written in conventional notation. This also solved some problems caused by a then
little-known and little-loved (in the Lisp community) operating system called Unix, which used
backslash as a character-quoter and slash in file names. However, it was a major incompatible
change from MacLisp and Zetalisp, which left Common Lisp open to quite some criticism.)

Of course, this left Common Lisp without a truncating integer division operation, which is
occasionally useful. Inspired by the many rounding modes of the S-1 [Correll, 1979; Hailpern,
1979] (which were influenced in turn by Kahan), Steele added four versions of the integer division
operation to Common Lisp—truncate, round, ceiling, and floor, each of which accepts either
one or two arguments and returns a quotient and remainder—thus bettering even Pascal. Overall,
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Common Lisp provides a much richer set of numerical primitives, and pays even closer attention
to such details as the branch cuts of complex trigonometric functions, than FORTRAN ever has.

3.5 Some Notable Failures

Despite Lisp’s tendency to absorb new features over time, both from other programming languages
and from experiments within the Lisp community, there are a few ideas that have been tried repeat-
edly in various forms but for some reason simply don’t catch on in the Lisp community. Notable
among these ideas are Algol-style syntax, generalized multiple values, and logic programming with
unification of variables.

3.5.1 Algol-Style Syntax

Ever since Steve Russell first hand-coded an implementation of EVAL, S-expressions have been
the standard notation for writing programs. In almost any Lisp system of the last thirty years,
one could write the function UNION (which computes the union of two sets represented as lists of
elements) in roughly the following form:

(defun union (x y)

(cond ((null x) y)

((member (car x) y) (union (cdr x) y))

(t (cons (car x) (union (cdr x) y)))))

The original intention, however, in the design of Lisp was that programs would be written as
M-expressions; the S-expression syntax was intended only for representation of data. The UNION

function in M-expression notation looks like this:

union[x;y] = [null[x]→y;

member[car[x];y]→union[cdr[x];y];

T→cons[car[x];union[cdr[x];y]]]

But as McCarthy noted [McCarthy, 1981]:

The unexpected appearance of an interpreter tended to freeze the form of the
language. . . . The project of defining M-expressions precisely. . .was neither finalized
nor completely abandoned. It just receded into the indefinite future, and a new gener-
ation of programmers appeared who preferred internal notation [i.e., S-expressions] to
any Fortran-like or Algol-like notation that could be devised.

Yet that was not the end of the story. Since that time there have been many other efforts to provide
Lisp with an Algol-like syntax. Time and again a Lisp user or implementor has felt a lack in the
language and provided a solution—and not infrequently attracted a substantial group of users—and
yet in the long run none of these has achieved acceptance.

The earliest example of this—after M-expressions, of course—appears to have been Henneman’s
A-language [Henneman, 1985]. Henneman gives the following definition of UNION:

(DEFINE UNION (OF AND) (8)

(UNION OF X AND Y) (IF X IS

EMPTY THEN Y ELSE IF FIRST OF

X IS A MEMBER OF Y THEN UNION

OF REST OF X AND Y ELSE

CONNECT FIRST OF X TO BEGIN

UNION OF REST OF X AND Y

END))
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The number 8 in this definition is the precedence of the UNION operator; note the use of BEGIN and
END as parenthetical delimiters, necessary because the CONNECT . . . TO . . . operator (which means
CONS) has higher precedence.

We find it curious that Henneman went to the trouble of pretty-printing the M-expressions
and S-expressions in his paper but presented all his examples of A-language in the sort of run-on,
block-paragraph style often seen in the S-expressions of his contemporaries. Nowadays we would
format such a program in this manner for clarity:

(DEFINE UNION (OF AND) (8)

(UNION OF X AND Y)

(IF X IS EMPTY THEN Y

ELSE IF FIRST OF X IS A MEMBER OF Y

THEN UNION OF REST OF X AND Y

ELSE CONNECT FIRST OF X TO

BEGIN UNION OF REST OF X AND Y END

))

Such formatting was not unheard of; the Algol programmers of the day used similar indentation
conventions in their published programs.

The EL1 language was designed by Ben Wegbreit as part of his Ph.D. research [Wegbreit, 1970].
It may be loosely characterized as a Lisp with an Algol-like surface syntax and strong data typing.
A complete programming system called ECL was built around EL1 at Harvard in the early 1970’s
[Wegbreit, 1971; Wegbreit, 1972; Wegbreit, 1974]. The UNION function in EL1 looks like this:

union <- EXPR(x: FORM, y: FORM; FORM)

[) x=NIL => y;

MEMBER(CAR(x), y) => union(CDR(x), y);

CONS(CAR(X), union(CDR(x), y)) (];

Note the type declarations of x, y, and the result as type FORM (pointer to dotted pair). The
digraphs [) and (] are equivalent to BEGIN and END (they looked better on a Model 33 Teletype
than they do here). Within a block the arrow => indicates the conditional return of a value from
the block, resulting in a notation reminiscent of McCarthy’s conditional notation for M-expressions.

Lisp itself was not widely used at Harvard’s Center for Research in Computing Technology
at that time; EL1 and PPL (Polymorphic Programming Language, a somewhat more Joss-like
interactive system) may have been Harvard’s answer to Lisp at the time. ECL might have survived
longer if Wegbreit had not left Harvard for Xerox in the middle of the project. As it was, ECL was
used for research and course work at Harvard throughout the 1970’s.

We have already discussed Teitelman’s CLISP (Conversational Lisp), which was part of Interlisp
[Teitelman, 1974]. The function UNION was built into Interlisp, but could have been defined using
CLISP in this manner:

DEFINEQ((UNION (LAMBDA (X Y)

(IF ~X THEN Y

ELSEIF X:1 MEMBER Y THEN UNION X::1 Y

ELSE <X:1 !(UNION X::1 Y)>]

In CLISP, ~ is a unary operator meaning NOT or NULL. X:n is element n of the list X, so X:1 means
(CAR X); similarly X::1 means (CDR X). The function MEMBER is predefined by CLISP to be an infix
operator, but UNION is not (though the user may so define it if desired). Angle brackets indicate
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construction of a list; ! within such a list indicates splicing, so <A !B> means (CONS A B). Finally,
the use of a final ] to indicate the necessary number of closing parentheses (four, in this case),
while not a feature of CLISP proper, is consistent with the Interlisp style.

MLISP was an Algol-like syntax for Lisp, first implemented for the IBM 360 by Horace Enea
and then re-implemented for the PDP-10 under Stanford Lisp 1.6 [Smith, 1970]. It provided infix
operators; a complex FOR construct for iteration; various subscripting notations such as A(1,3)

(element of a two-dimensional array) and L[1,3,2] (equivalent to (cadr (caddr (car L))));
“vector” operations (a concise notation for MAPCAR); and destructuring assignment.

EXPR UNION (X,Y); %MLISP version of UNION

IF ¬X THEN Y ELSE

IF X[1] ε Y THEN UNION(X↓1,Y)

ELSE X[1] CONS UNION(X↓1,Y);

Vaughan Pratt developed an Algol-style notation for Lisp called CGOL [Pratt, 1973]. Rather
than embedding algebraic syntax within S-expressions, CGOL employed a separate full-blown to-
kenizer and parser. This was first implemented for Stanford Lisp 1.6 in 1970 when Pratt was at
Stanford; at this time there was an exchange of ideas with the MLISP project. After Pratt went to
MIT shortly thereafter, he implemented a version for MacLisp [Pratt, 1976]. Versions of this parser
were also used in the symbolic algebra systems SCRATCHPAD at IBM Yorktown and MACSYMA
at MIT’s Project MAC; Fred Blair, who also developed LISP370, did the reimplementation for
SCRATCHPAD, while Michael Genesereth did it for MACSYMA.

Our CGOL version of the UNION function defines it as an infix operator (the numbers 14 and
13 are left and right “binding powers” for the parser):

define x "UNION" y, 14, 13;

if not x then y

else if member(car x, y) then cdr x union y

else car x . cdr x union y ♦

Here we have assumed the version of CGOL implemented at MIT, which stuck to the standard
ASCII character set; the exact same definition using the Stanford extended character set would
be:

define x "∪" y, 14, 13;

if ¬x then y else if αx ε y then βx ∪ y else αx . βx ∪ y ♦

The “.” represents CONS in both the above examples; the delimiter ♦ (actually the ASCII “alt-
mode” character, nowadays called “escape”) indicates the end of a top level expression. All unary
Lisp functions are unary operators in CGOL, including CAR and CDR. In the definition above we have
relied on the fact that such unary operators have very high precedence, so cdr x union y means
(cdr x) union y, not cdr (x union y). We also carefully chose the binding powers for UNION

relative to “.” so that the last expression would be parsed as (car x) . ((cdr x) union y)).
It is not obvious that this is the best choice; Henneman chose to give CONS (in the form of CONNECT
. . . TO . . . ) higher precedence than UNION. Pratt remarked [Pratt, 1976]:

If you want to use the CGOL notation but don’t want to have anything to do with
binding powers, simply parenthesize every CGOL expression as though you were writing
in Lisp. However, if you omit all parentheses . . . you will not often go wrong.

Compare this to Henneman’s remark [Henneman, 1985]:
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The one great cause of most of the incorrect results obtained in practice is an incor-
rect precedence being assigned to a function.

During the 1970’s a number of “AI languages” were designed to provide specific programming
constructs then thought to be helpful in writing programs for AI applications. Some of these were
embedded within Lisp and therefore simply inherited Lisp syntax (and in some cases influenced Lisp
syntax—see section 4 for a discussion of these). Those that were not embedded usually had a syntax
related to that of Algol, while including some of the other features of Lisp (such as symbolic data
structures and recursive functions). Among these were POP-2 [Burstall, 1971], SAIL [Feldman,
1972], and the Pascal-based TELOS [Travis, 1977].

The idea of introducing Algol-like syntax into Lisp keeps popping up and has seldom failed to
create enormous controversy between those who find the universal use of S-expressions a technical
advantage (and don’t mind the admitted relative clumsiness of S-expressions for numerical expres-
sions) and those who are certain that algebraic syntax is more concise, more convenient, or even
more natural (whatever that may mean, considering that all these notations are artificial).

We conjecture that Algol-style syntax has not really caught on in the Lisp community as a whole
for two reasons. First, there are not enough special symbols to go around. When your domain
of discourse is limited to numbers or characters, there are only so many operations of interest,
and it is not difficult to assign one special character to each and be done with it. But Lisp has a
much richer domain of discourse, and a Lisp programmer often approaches an application as yet
another exercise in language design; the style typically involves designing new data structures and
new functions to operate on them—perhaps dozens or hundreds—and it’s just too hard to invent
that many distinct symbols (though the APL community certainly has tried). Ultimately one must
always fall back on a general function-call notation; it’s just that Lisp programmers don’t wait until
they fail.

Second, and perhaps more important, Algol-style syntax makes programs look less like the data
structures used to represent them. In a culture where the ability to manipulate representations of
programs is a central paradigm, a notation that distances the appearance of a program from the
appearance of its representation as data is not likely to be warmly received (and this was, and is,
one of the principal objections to the inclusion of loop in Common Lisp).

On the other hand, precisely because Lisp makes it easy to play with program representations,
it is always easy for the novice to experiment with alternative notations. Therefore we expect
future generations of Lisp programmers to continue to reinvent Algol-style syntax for Lisp, over
and over and over again, and we are equally confident that they will continue, after an initial period
of infatuation, to reject it. (Perhaps this process should be regarded as a rite of passage for Lisp
hackers.)

3.5.2 Generalized Multiple Values

Many Lisp extenders have independently gone down the following path. Sometimes it is desirable
to return more than one item from a function. It is awkward to return some of the results through
global variables, and inefficient to cons up a list of the results (pushing the system that much
closer to its next garbage collection) when we know perfectly well that they could be returned in
machine registers or pushed onto the machine control stack. Curiously, the prototypical example
of a function that ought to return two results is not symbolic but numerical: integer division might
conveniently return both a quotient and a remainder. (Actually, it would be just as convenient for
the programmer to use two separate functions, but we know perfectly well that the computation
of one produces the other practically for free—again it is an efficiency issue.)
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Suppose, then, that some primitive means of producing multiple values is provided. One way
is to introduce new functions and/or special forms. Common Lisp, for example, following Lisp-
Machine Lisp, has a primitive function called VALUES; the result of (values 3 4 5) is the three
numbers 3, 4, and 5. The special form

(multiple-value-bind (p q r) (foo) body)

executes its body with the variables p, q, and r locally bound to three values returned as the value
of the form (foo).

But this is all so ad hoc and inelegant. Perhaps multiple values can be made to emerge from
the intrinsic structure of the language itself. Suppose, for example, that the body of a lambda
expression were an implicit VALUES construct, returning the values of all its subforms, rather than
an implicit PROGN, returning the values of only the last subform? That takes care of producing
multiple values. Suppose further that function calls were redefined to use all the values returned
by each subform, rather than just one value from each subform? Then one could write

((lambda (quo rem) ...) (/ 44 6))

thereby binding quo to the quotient 7 and rem to the remainder 2. That takes care of consuming
multiple values. All very simple and tidy! Oops, two details to take care of. First, returning
to lambda expressions, we see that, for consistency, they need to return all the values of all the
subforms, not just one value from each subform. So the form

((lambda (quo rem) (/ quo rem) (/ rem quo)) (/ 44 6))

returns four values: 3, 1, 0, and 2. Second, there is still a need for sequencing forms that have
side effects such as assignment. The simple solution is to make such forms as (setq x 0) and
(print x) return zero values, so that

((lambda (quo rem) (print quo) rem) (/ 44 6))

returns only the remainder 2 after printing the quotient 7.
This all has a very simple and attractive stack-based implementation. Primitives simply push

all their values, one after another, onto the stack. At the start of the processing for a function call,
place a marker on the stack; after all subforms have been processed, simply search the stack for the
most recent marker; everything above it should be used as arguments for the function call—but be
sure to remove or cancel the marker before transferring control to the function.

Yes, this is all very neat and tidy—and as soon as you try to use it, you find that code becomes
much, much harder to understand, both for the maintainer and for the compiler. Even if the
programmer has the discipline not to write

(cons (/ 44 6) (setq x 0))

which returns (7 . 2) after setting x to 0, the compiler can never be sure that no such atrocities
lurk in the code it is processing. In the absence of fairly complete information about how many
values are produced by each function, including all user-defined functions, a compiler cannot verify
that a function call will supply the correct number of arguments. An important practical check for
Lisp programming errors is thus made all but impossible.

Conditionals introduce two further problems. First: what shall be the interpretation of

(if (foo) (bar))
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if (foo) returns two values? Shall the second value be discarded, or treated as the value to be
returned if the first value is true? Perhaps the predicate should be required to return exactly one
value. Very well, but there remains the fact that the two subforms might return different numbers
of values; (if (foo) 3 (/ 44 6)) might return the single value 3 or the multiple values 7 and 2.
It follows immediately that no compiler, even if presented with a complete program, can deduce in
general how many values are returned by each function call; it is formally undecidable.

Now all this might seem to be entirely in the spirit of Lisp as a weakly typed language; if
the types of the values returned by functions may not be determinable until run time, why not
their very cardinality? And declarations might indicate the number of values where efficiency is
important, just as type declarations already assist many Lisp compilers. Nevertheless, as a matter
of fact, nearly everyone who has followed this path has given up at this point in the development,
muttering “This way madness lies,” and returned home rather than fall into the tarpit.

We ourselves have independently followed this line of thought and have had conversations with
quite a few other people who have also done so. There are few published sources we can cite,
however, precisely because most of them eventually judged it a bad idea before publishing anything
about it. (This is not to say that it actually is a bad idea, or that some variation cannot eliminate
its disadvantages; here we wish merely to emphasize the similarity of thinking among many inde-
pendent researchers.) Among the most notable efforts that did produce actual implementations
before eventual abandonment are SEUS and POP-2 [Burstall, 1971]. The designers and implemen-
tors of SEUS (Richard Weyhrauch, Carolyn Talcott, David Posner, Ralph Goren, William Scherlis,
Len Bosack, and Gabriel) never published their results, although it was a novel language design,
and had a fast, compiler- and microcode-based implementation, complete with programming envi-
ronment. POP-2 was regarded by its designers as an AI language, one of the many produced in
the late 1960’s and early 1970’s, rather than as a variant of Lisp; it enjoyed quite some popularity
in Europe and was used to implement the logic programming language POPLOG [Mellish, 1984].

3.5.3 Logic Programming and Unification

During the 1970’s and on into the 1980’s there have been a number of attempts to integrate the
advantages of the two perhaps foremost AI programming language families, Lisp and Prolog, into
a single language. Such efforts were particularly a feature of the software side of the Japanese
Fifth Generation project. Examples of this are Robinson’s LOGLISP [Robinson, 1982], the TAO
project [Takeuchi, 1983; Okuno, 1984], and TABLOG [Malachi, 1984]. There have also been related
attempts to integrate functional programming and Prolog. (All these should be contrasted with
the use of Lisp as a convenient language for implementing Prolog, as exemplified by Komorowski’s
QLOG [Komorowski, 1982] and the work of Kahn and Carlsson [Kahn, 1984].)

We conjecture that this idea has not caught on in the Lisp community because of unification, the
variable-matching process used in Prolog. Indeed one can easily design a language that has many
of the features of Lisp but uses unification during procedure calls. The problem is that unification
is sufficiently different in nature from lambda-binding that the resulting language doesn’t really
feel like Lisp any more. To the average Lisp programmer, it feels like an extension of Prolog but
not an extension of Lisp; you just can’t mess around that much with something as fundamental
as procedure calls. On the other hand, one can leave Lisp procedure calls as they are and provide
unification as a separate facility that can be explicitly invoked. But then it is just another Lisp
library routine, and the result doesn’t feel at all like Prolog.
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4 Lisp as a Language Laboratory

An interesting aspect of the Lisp culture, in contrast to those surrounding most other programming
languages, is that toy dialects are regarded with a fair amount of respect. Lisp has been used
throughout its history as a language laboratory. It is trivial to add a few new functions to Lisp in
such a way that they look like system-provided facilities. Given macros, CLISP, or the equivalent,
it is pretty easy to add new control structures or other syntactic constructs. If that fails, it is
the work of only half an hour to write, in Lisp, a complete interpreter for a new dialect. To see
how amazing this is, imagine starting with a working C, Fortran, Pascal, PL/I, BASIC, or APL
system—you can write and run any program in that language, but have no access to source code
for the compiler or interpreter—and then tackling these three exercises:

1. Add a new arithmetic operator to the language similar to the one for Pythagorean addition
in Knuth’s Metafont language [Knuth, 1986]: a++b computes

√
a2 + b2. The language is to

be augmented in such a way that the new operator is syntactically similar to the language
operators for addition and subtraction. (For C, you may use +++ or @ rather than ++; for
APL, use one of the customary awful overstrikes such as [+].)

2. Add a case statement to the language. (If it already has a case statement, then add a
statement called switch that is just like the case statement already in the language, except
that when the selected branch has been executed control falls through to succeeding branches;
a special break statement, or dropping out of the last branch, must be used to terminate
execution of the switch statement.)

3. Add full lexically scoped functional closures to the language.

Without source code for the compiler or interpreter, all three projects require one practically to
start over from scratch. That is part of our point. But even given source code for a Fortran compiler
or APL interpreter, all three exercises are much more difficult than in Lisp. The Lisp answer to
the first one is a one-liner (shown here in Common Lisp):

(defun ++ (x y) (+ (sqrt x) (sqrt y)))

Lisp does not reserve special syntax (such as infix operators) for use by built-in operations, so
user-defined functions look just like system-defined functions to the caller.

The second requires about a dozen lines of code (again, in Common Lisp, using backquote
syntax as described in the discussion of macros):

(defmacro switch (value &rest body)

(let* ((newbody (mapcar #’(lambda (clause)

‘(,(gensym) ,@(rest clause)))

body))

(switcher (mapcar #’(lambda (clause newclause)

‘(,(first clause) (go ,(first newclause))))

body newbody)))

‘(block switch

(tagbody (case ,value ,@switcher)

(break)

,@(apply #’nconc newbody))))

(defmacro break () ’(return-from switch))

Here we use two macros, one for switch and one for break, which together cause the statement
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(switch n

(0 (princ "none") (break))

(1 (princ "one "))

(2 (princ "too "))

(3 (princ "many")))

(which always prints either many, too many, one too many, none, or nothing) to expand into

(block switch

(tagbody (case n

(0 (go G0042))

(1 (go G0043)

(2 (go G0044))

(3 (go G0045)))

(return-from switch)

G0042 (princ "none")

(return-from switch)

G0043 (princ "one ")

G0044 (princ "too ")

G0045 (princ "many")))

which is not unlike the code that would be produced by a C compiler.
For examples of interpreters that solve the third problem in about 100 lines of code, see [Steele,

1978c; Steele, 1978b].
There is a rich tradition of experimenting with augmentations of Lisp, ranging from “let’s add

just one new feature” to inventing completely new languages using Lisp as an implementation
language. This activity was carried on particularly intensively at MIT during the late 1960’s and
early 1970’s but also at other institutions such as Stanford University, Carnegie-Mellon University,
and Indiana University. At that time it was customary to make a set of ideas about programming
style concrete by putting forth a new programming language as an exemplar. (This was true outside
the Lisp community as well; witness the proliferation of Algol-like, and particularly Pascal-inspired,
languages around the same time period. But Lisp made it convenient to try out little ideas with
a small amount of overhead, as well as tackling grand revampings requiring many man-months of
effort.)

One of the earliest Lisp-based languages was METEOR [Bobrow, 1985], a version of COMIT
(note the pun) with Lisp syntax. COMIT [MIT RLE, 1962a; MIT RLE, 1962b; Yngve, 1972]
was a pattern-matching language that repeatedly matched a set of rules against the contents of a
flat, linear workspace of symbolic tokens; it was a precursor of SNOBOL and an ancestor of such
rule-based languages as OPS5 [Forgy, 1977]. METEOR was embedded within the MIT Lisp 1.5
system that ran on the IBM 7090. The Lisp code for METEOR is a little under 300 80-column
cards (some with more whitespace than others). By contrast, the 7090 implementation of the
COMIT interpreter occupied about 10,000 words or memory, according to Yngve; assuming this
reflects about 10,000 lines of assembly language code, we can view this as an early example of the
effectiveness of LISP as a high-level language for prototyping other languages.

Another early LISP-based pattern-matching language was CONVERT [Guzman, 1966].
Whereas METEOR was pretty much a straight implementation of COMIT represented as Lisp
data structures, CONVERT merged the pattern-matching features of COMIT with the recursive
data structures of Lisp, allowing the matching of recursively defined patterns to arbitrary Lisp data
structures.
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Carl Hewitt designed an extremely ambitious Lisp-like language for theorem-proving called
Planner [Hewitt, 1972]. Its primary contributions consisted of advances in pattern-directed invo-
cation and the use of automatic backtracking as an implementation mechanism for goal-directed
search. It was never completely implemented as originally envisioned, but it spurred three other
important developments in the history of Lisp: Micro-Planner, Muddle, and Conniver.

Gerald Jay Sussman, Drew McDermott, and Eugene Charniak implemented a subset of Planner
called Micro-Planner [Sussman, 1971], which was embedded within the MIT PDP-6 Lisp system
that eventually became MacLisp. The semantics of the language as implemented were not com-
pletely formalized. The implementation techniques were rather ad hoc and did not work correctly
in certain complicated cases; the matcher was designed to match two patterns, each of which
might contain variables, but did not use a complete unification algorithm. (Much later, Sussman,
on learning about Prolog, remarked to Guy Steele that Prolog appeared to be the first correct
implementation of Micro-Planner.)

A version of Planner was also implemented in POP-2 [Davies, 1984].
The language Muddle (later MDL) was an extended version of Lisp and in some ways a competi-

tor, designed and used by the Dynamic Modeling Group at MIT, which was separate from the MIT
AI Laboratory but in the same building at 545 Technology Square. This effort was begun in late
1970 by Gerald Jay Sussman, Carl Hewitt, Chris Reeve, and David Cressey, later joined by Bruce
Daniels, Greg Pfister, and Stu Galley. It was designed “. . . as a successor to Lisp, a candidate
vehicle for the Dynamic Modeling System, and a possible base for implementation of Planner-70.”
[Galley, 1975] To some extent the competition between Muddle and Lisp, and the fact that Suss-
man had a foot in each camp, resulted in cross-fertilization. The I/O, interrupt handling, and
multiprogramming (that is, coroutining) facilities of Muddle were much more advanced than those
of MacLisp at the time. Muddle had a more complex garbage collector than PDP-10 MacLisp
ever had, as well as a larger library of application subroutines, especially for graphics. (Some Lisp
partisans at the time would reply that Muddle was used entirely to code libraries of subroutines
but no main programs! But in fact some substantial applications were coded in Muddle.) Muddle
introduced the lambda-list syntax markers OPTIONAL, REST, and AUX that were later adopted
by Conniver, Lisp Machine Lisp, and Common Lisp.

The language Conniver was designed by Drew McDermott and Gerald Jay Sussman in 1972
in reaction to perceived limitations of Micro-Planner and in particular of its control structure. In
the classic paper Why Conniving Is Better Than Planning [Sussman, 1972b; Sussman, 1972a], they
argued that automatic nested backtracking was merely an overly complicated way to express a set
of FORALL loops used to perform exhaustive search:

It is our contention that the backtrack control structure that is the backbone of
Planner is more of a hindrance in the solution of problems than a help. In particular,
automatic backtracking encourages inefficient algorithms, conceals what is happening
from the user, and misleads him with primitives having powerful names whose power is
only superficial.

The design of Conniver put the flow of control very explicitly in the hands of the programmer.
The model was an extreme generalization of coroutines; there was only one active locus of control,
but arbitrarily many logical threads and primitives for explicitly transferring the active locus from
one to another. This design was strongly influenced by the “spaghetti stack” model introduced by
Daniel Bobrow and Ben Wegbreit [Bobrow, 1973] and implemented in BBN-Lisp (later to be known
as Interlisp). Like spaghetti stacks, Conniver provided separate notions of a data environment and
a control environment and the possibility or creating closures over either. (Later work with the
Scheme language brought out the point that data environments and control environments do not
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play symmetrical roles in the interpretation of Lisp-like languages [Steele, 1977a].) Conniver differed
from spaghetti stacks in ways stemming primarily from implementation considerations. The main
point of Conniver was generality and ease of implementation; it was written in Lisp and represented
control and data environments as Lisp list structures, allowing the Lisp garbage collector to handle
reclamation of abandoned environments. The implementation of spaghetti stacks, on the other
hand, involved structural changes to a Lisp system at the lowest level. It addressed efficiency issues
by allowing stack-like allocation and deallocation behavior wherever possible. The policy was pay
as you go but don’t pay if you don’t use it: programs that do not create closures should not pay
for the overhead of heap management of control and data environments.

At about this time Carl Hewitt and his students began to develop the actor model of compu-
tation, in which every computational entity, whether program or data, is an actor: an agent that
can receive and react to messages. The under-the-table activity brought out by Conniver was made
even more explicit in this model; everything was message-passing, everything ran on continuations.
Hewitt and his student Brian Smith commented on the interaction of a number of research groups
at the time [?]:

The early work on PLANNER was done at MIT and published in IJCAI-69 [Hewitt,
1969]. In 1970 a group of interested researchers (including Peter Deutsch, Richard Fikes,
Carl Hewitt, Jeff Rulifson, Alan Kay, Jim Moore, Nils Nilsson, and Richard Waldinger)
gathered at Pajaro Dunes to compare notes and concepts. . . .

In November 1972, Alan Kay gave a seminar at MIT in which he emphasized the
importance of using intentional definitions of data structures and of passing messages
to them such as was done to a limited extent for the “procedural data structures” in the
lambda calculus languages of Landin, Evans, and Reynolds and extensively in SIMULA-
67. His argument was that only the data type itself really “knows” how to implement any
given operation. We had previously given some attention to procedural data structures
in our own research. . . .However, we were under the misconception that procedural data
structures were too inefficient for practical use although they had certain advantages.

Kay’s lecture struck a responsive note . . . We immediately saw how to use his idea
. . . to extend the principle of procedural embedding of knowledge to data structures.
In effect each type of data structure becomes a little plan of what to do for each kind
of request that it receives. . . .

Kay proposed a language called SMALLTALK with a token stream oriented inter-
preter to implement these ideas. . . .

[At that time,] Peter Bishop and Carl Hewitt were working to try to obtain a general
solution to the control structure problems which had continued to plague PLANNER-
like problem solving systems for some years. Sussman had proposed a solution oriented
around “possibility lists” which we felt had very serious weaknesses. . . . Simply looking at
their contents using try-next can cause unfortunate global side-effects . . . [which] make
Conniver programs hard to debug and understand. The token streams of SMALLTALK
have the same side-effect problem as the possibility lists of Conniver. After the lecture,
Hewitt pointed out to Kay the control structure problems involved in his scheme for a
token stream oriented interpreter.

By December 1972, we succeeded in generalizing the message mechanism of
SMALLTALK and SIMULA-67; the port mechanism of Krutar, Balzer, and Mitchell;
and the previous CALL statement of PLANNER-71 to a universal communication mech-
anism. Our generalization solved the control structure problems that Hewitt pointed out
to Kay in the design of SMALLTALK. We developed the actor transmission communica-
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tion primitive as part of a new language-independent, machine-independent, behavioral
model of computation. The development of the actor model of computation and its
ramifications is our principal original contribution to this area of research. . . .

The following were the main influences on the development of the actor model of
computation:

• The suggestion by [Alan] Kay that procedural embedding be extended to cover
data structures in the context of our previous attempts to generalize the work by
Church, Landin, Evans, and Reynolds on “functional data structures.”

• The context of our previous attempts to clean up and generalize the work on corou-
tine control structures of Landin, Mitchell, Krutar, Balzer, Reynolds, Bobrow-
Wegbreit, and Sussman.

• The influence of Seymour Papert’s “little man” metaphor for computation in
LOGO.

• The limitations and complexities of capability-based protection schemes. Every
actor transmission is in effect an inter-domain call efficiently providing an intrinsic
protection on actor machines.

• The experience developing previous generations of PLANNER. Essentially the
whole PLANNER-71 language (together with some extensions) was implemented
by Julian Davies in POP-2 at the University of Edinburgh.

In terms of the actor model of computation, control structure is simply a pattern of
passing messages. . . . Actor control structure has the following advantages over that of
Conniver:

• A serious problem with the Conniver approach to control structure is that the
programmer (whether human or machine) must think in terms of low level data
structures such as activation records or possibility links. The actor approach allows
the programmer to think in terms of the behavior of objects that naturally occur
in the domain being programmed. . . .

• Actor transmission is entirely free of side-effects. . . .

• The control mechanisms of Conniver violate principles of modularity. . . . Dijkstra
has remarked that the use of the goto is associated with badly structured programs.
We concur in this judgement but feel that the reason is that the goto is not
a sufficiently powerful primitive. The problem with the goto is that a message
cannot be sent along with control to the target. . . .

• Because of its primitive control structures, Conniver programs are difficult to write
and debug. . . . Conniver programs are prone to going into infinite loops for no
reason that is very apparent to the programmer.

Nevertheless Conniver represents a substantial advance over Micro-Planner in increasing
the generality of goal-oriented computations that can be easily performed. However,
this increase in generality comes at the price of lowering the level of the language of
problem solving. It forces users to think in low level implementation terms such as
“possibility lists” and “a-links.” We propose a shift in the paradigm of problem solving
to be one of a society of individuals communicating by passing messages.

We have quoted Smith and Hewitt at length for three reasons: because their comparative analysis
is very explicit; because the passage illustrates the many connections among different ideas floating
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around in the AI, Lisp, and other programming language communities; and because this particular
point in the evolution of ideas represented a distillation that soon fed back quickly and powerfully
into the evolution of Lisp itself.

Hewitt and his students (notably Howie Shrobe, Brian Smith, Todd Matson, Roger Hale, Peter
Bishop, Marilyn McLennan, Russ Atkinson, Mike Freiling, Ken Kahn, Keith Nishihara, Kathy
Van Sant, Aki Yonizawa, Benjamin Kuipers, Richard Stieger, and Irene Greif) developed and
implemented in MacLisp a new language to make concrete the actor model of computation. This
language was first called Planner-73 but the name was later changed to PLASMA (PLAnner-like
System Modeled on Actors) [?; Hewitt, 1975].

While the syntax of PLASMA was recognizably Lisp-like, it made use of several kinds of paren-
theses and brackets (as did Muddle) as well as many other special characters. It is reasonable to
assume that Hewitt was tempted by the possibilities of the then newly available Knight keyboard
and Xerox Graphics Printer (XGP) printer. (The Xerox Graphics Printer was the first of the laser
printers, 200 dots per inch. The keyboards, designed by Tom Knight of the MIT AI Lab, were
the MIT equivalent of the extended-ASCII keyboards developed years earlier at the Stanford AI
Laboratory. Like the Stanford keyboards, Knight keyboards had Control and Meta keys (which
were soon pressed into service in the development of the command set for the EMACS text editor)
and a set of graphics that included such exotic characters as α, β, and ≡. The XGP, at 200 dots
per inch, made possible the printing of such exotic characters.) The recursive factorial function
looked like this in PLASMA:

[factorial ---

(cases

(---> [0] 1)

(---> [=n] (n * (factorial (n - 1)))))]

Note the use of infix arithmetic operators. This was not merely clever syntax, but clever semantics;
(n - 1) really meant that a message containing the subtraction operator and the number 1 was
to be sent to the number/actor/object named by n.

One may argue that Lisp development at MIT took two distinct paths during the 1970’s. In the
first path, MacLisp was the workhorse tool, coded in assembly language for maximum efficiency
and compactness, serving the needs of the AI Laboratory and the MACSYMA group. The second
path consisted of an extended dialogue/competition/argument between Hewitt (and his students)
and Sussman (and his students), with both sides drawing in ideas from the rest of the world and
spinning some off as well. This second path was characterized by a quest for “the right thing” where
each new set of ideas was exemplified in the form of a new language, usually implemented on top of
a Lisp-like language (MacLisp or Muddle) for the sake of rapid prototyping and experimentation.

The next round in the Hewitt/Sussman dialogue was, of course, Scheme (as discussed in section
2.8); in hindsight, we observe that this development seems to have ended the dialogue, perhaps
because it brought the entire path of exploration full circle. Starting from Lisp, they sought to
explicate issues of search, of control structures, of models of computation, and finally came back
simply to good old Lisp, but with a difference: lexical scoping—closures, in short—were needed to
make Lisp compatible with the lambda calculus not merely in syntax but also in semantics, thereby
connecting it firmly with various developments in mathematical logic and paving the way for the
Lisp community to interact with developments in functional programming.

Hewitt had noted that the actor model could capture the salient aspects of the lambda calculus;
Scheme demonstrated that the lambda calculus captured nearly all salient aspects (excepting only
side effects and synchronization) of the actor model.
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Sussman and Steele began to look fairly intensely at the semantics of Lisp-like as well as actor-
based languages in this new light. Scheme was so much simpler even than Lisp 1.5, once one
accepted the overheads of maintaining lexical environments and closures, that one could write a
complete interpreter for it in Lisp on a single sheet of paper (or in two 30-line screenfuls). This
allowed for extremely rapid experimentation with language and implementation ideas; at one point
Sussman and Steele were testing and measuring as many as ten new interpreters a week. Some of
their results were summarized in The Art of the Interpreter [Steele, 1978b]. A particular point of
interest was comparison of call-by-name and call-by-value parameters; in this they were influenced
by work at Indiana University discussed in the paper CONS Should Not Evaluate Its Arguments
[Friedman, November].

Besides being itself susceptible to rapid mutation, Scheme has also served as an implementation
base for rapid prototyping of yet other languages. One popular technique among theoreticians for
formally describing the meaning of a language is to give a denotational semantics, which describes
the meaning of each construct in terms of its parts and their relationships; lambda calculus is the
glue of this notation.

While Scheme showed that a properly designed Lisp gave one all the flexibility (if not all the
syntax) one needed in managing control structure and message-passing, it did not solve the other
goal of the development of Lisp-based AI languages: the automatic management of goal-directed
search or of theorem proving. After Scheme, a few new Lisp-based languages were developed in this
direction by Sussman and his students, including constraint-based systems [Sussman, 1975a; Stall-
man, 1976; Steele, 1979; Kleer, 1978b] and truth maintenance systems [Kleer, 1978a; McAllester,
1978] based on non-monotonic logic. The technique of dependency-directed backtracking elimi-
nated the “giant nest of FORALL loops” effect of chronological backtracking. Over time this line
of research became more of a database design problem than a language design problem, and has
not yet resulted in feedback to the mainstream evolution of Lisp.

Development of languages for artificial intelligence applications continued at other sites, how-
ever, and Lisp has remained the vehicle of choice for implementing them. During the early 1980’s
C became the alternative of choice for a while, especially where efficiency was a major concern. Im-
provements in Lisp implementation techniques, particularly in compilation and garbage collection,
have swung that particular pendulum back a bit.

During the AI boom of the early 1980’s, “expert systems” was the buzzword; this was usually
understood to mean rule-based systems written in languages superficially not very different from
METEOR or CONVERT. OPS5 was one of the better-known rule-based languages of this period,
and XCON (an expert system for configuring VAX installations, developed by Carnegie-Mellon
University for Digital Equipment Corporation) was its premier application success story. OPS5
was first implemented in Lisp; later it was recoded for efficiency in BLISS [Wulf, 1971] (a CMU-
developed and DEC-supported systems implementation language at about the same semantic level
as C).

Another important category of AI languages was frame-based; a good example was KRL (Knowl-
edge Representation Language), which was implemented in Interlisp.

Another line of experimentation in Lisp is in the area of parallelism. While early developments
included facilities for interrupt handling and multiprogramming, true multiprocessing evolved only
with the availability of appropriate hardware facilities (in some cases built for the purpose). S1
Lisp [Brooks, 1982a] was designed to use the multiple processors of an S1 system, but (like so many
other features of S1 Lisp) that part never really worked. Some of the most important early “real”
parallel Lisp implementations were Multilisp, Qlisp, and Butterfly PSL.

Multilisp [Halstead, 1984; Halstead, 1985] was the work of Bert Halstead and his students at
MIT. Based on Scheme, it relied primarily on the notion of a future, which is a sort of laundry ticket,
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a promise to deliver a value later once it has been computed. Multilisp also provided a PCALL
construct, essentially a function call that evaluates the arguments concurrently (and completely)
before invoking the function. PCALL thus provides a certain structured discipline for the use
of futures that is adequate for many purposes. Multilisp ran on the Concert multiprocessor, a
collection of 32 Motorola 68000 processors. MultiScheme, a descendant of Multilisp, was later
implemented for the BBN Butterfly [Miller, 1987].

Butterfly PSL [Swanson, 1988] was an implementation of Portable Standard Lisp [Griss, 1982]
on the BBN Butterfly. It also relied entirely on futures for the spawning of parallel processes.

Qlisp [Gabriel, 1984; Goldman, 1988] was developed by Richard Gabriel and John McCarthy at
Stanford. It extended Common Lisp with a number of parallel control structures that parallel (pun
intended) existing Common Lisp control constructs, notably QLET, QLAMBDA, and QCATCH.
The computational model involved a global queue of processes and a means of spawning processes
and controlling their interaction and resource consumption. For example, QLAMBDA could pro-
duce three kinds of functions: normal ones, as produced by LAMBDA; eager ones, which would
spawn a separate process when created; and delayed ones, which would spawn a separate process
when invoked. Qlisp was implemented on the Alliant FX8 and was the first compiled parallel Lisp
implementation.

Connection Machine Lisp [Steele, 1986] was a dialect of Common Lisp extended with a new
data structure, the xapping intended to support fine-grain data parallelism. A xapping was imple-
mentationally a strange hybrid of array, hash table, and association list; semantically it is a set
of ordered index-value pairs. The primitives of the language are geared toward processing all the
values of a xapping concurrently, matching up values from different xappings by their associated
indexes. The idea was that indexes are labels for virtual processors.

To recapitulate: Lisp is an excellent laboratory for language experimentation for two reasons.
First, one can choose a very small subset, with only a dozen primitives or so, that is still recognizably
a member of the class of Lisp-like languages. It is very easy to bootstrap such a small language, with
variations of choice, on a new platform. If it looks promising, one can flesh out the long laundry
list of amenities later. Second, it is particularly easy—the work of an hour or less—to bootstrap
such a new dialect within an existing Lisp implementation. Even if the host implementation differs
in fundamental ways from the new dialect, it can provide primitive operations such as arithmetic
and I/O as well as being a programming language that is just plain convenient for writing language
interpreters. If you can live with the generic, list-structure-oriented syntax, you can have a field
day reprogramming the semantics. After you get that right there is time enough to re-engineer it
and, if you must, slap a parser on the front.

5 Why Lisp is Diverse

In this history of the evolution of Lisp we have seen that Lisp seems to have a more elaborate and
complex history than languages with wider usage. It would seem that almost every little research
group has its own version of Lisp, and there would appear to be as many Lisps as variations on
language concepts. It is natural to ask what is so special or different about Lisp that explains it.

There are five basic reasons: its theoretical foundations, its malleability, its interactive and
incremental nature, its operating system facilities, and the people who choose to work on it.

Its theoretical foundations. Lisp was founded on the footing of recursive function theory and
the theory of computability. Its purest form is useful for mathematical reasoning and proof. There-
fore, many theoretically minded researchers have adopted Lisp or Lisp-like languages in which to
express their ideas and to do their work. We thus see many Lisp-oriented papers with new lan-
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guage constructs explained, existing constructs explained, properties of programs proved, and proof
techniques explored.

The upshot is that Lisp and Lisp-like languages are always in the forefront of basic language
research. And it is common for more practically minded theoretical researchers to also implement
their ideas in Lisp.

Its malleability. It is easy with Lisp to experiment with new language features, because it is
possible to extend Lisp in such a way that the extensions are indistinguishable to users from the
base language. Primarily this is accomplished through the use of macros, which have been part
of Lisp since 1963 [Hart, 1963]. Lisp macros, with their use of Lisp as a computation engine to
compute expansions, have proved to be a more effective way to extend a language than the string-
processing mechanisms of other languages. Furthermore, such macro-based extensions are accepted
within the Lisp community in a way that is not found in other language communities.

Furthermore, more recent Lisp dialects have provided mechanisms to extend the type system.
This enables people to experiment with new data types. Of course, other languages have had this
mechanism, but in Lisp the data typing mechanism combines with the powerful macro facility and
the functional nature of the language to allow entirely new computing paradigms to be built in
Lisp. For example, we have seen data-driven paradigms [Sussman, 1971], possible-worlds paradigms
[McDermott, 1974], and object-oriented paradigms [Moon, 1986] [Bobrow, 1986] implemented in
Lisp in such a way that the seams between Lisp and these new paradigms are essentially invisible.

Its interactive and incremental nature. It is easy to explore the solutions to programming
problems in Lisp, because it is easy to implement part of a solution, test it, modify it, change
design, and debug the changes. There is no lengthy edit-compile-link cycle. Because of this,
Lisp is useful for rapid prototyping and for constructing very large programs in the face of an
incomplete—and possibly impossible to complete—plan of attack. Therefore, Lisp has often been
used for exploring territory that is too imposing with other languages.

This characteristic of Lisp makes it attractive to the adventuresome and pioneering.
Its operating system facilities. Many Lisp implementations provide facilities reminiscent of

operating systems: a command processor, an automatic storage management facility, file man-
agement, display (windows, graphics, mouse) facilities, multitasking, a compiler, an incremental
(re)linker/loader, a symbolic debugger, performance monitoring, and sometimes multiprocessing
(parallel programming).

This means that it is possible to do operating system research in Lisp and to provide a complete
operating environment. Combined with its interactive and incremental nature, it is possible to write
sophisticated text editors, and to supplant the native operating system of the host computer. Thus,
a Lisp system can provide an operating environment that provides strong portability across a wide
variety of incompatible platforms.

This makes Lisp an attractive vehicle for researchers and thereby further diversifies Lisp.
Its people. Of course, languages do not diversify themselves, people diversify languages. The

above four factors merely serve to attract people to Lisp, and they provide facilities for them to
experiment with Lisp. If the people attracted to Lisp were not interested in exploring new language
alternatives, then Lisp would not have been diversified, so there must be something about Lisp that
attracts adventuresome people.

Lisp is the language of artificial intelligence, among other things. And AI is a branch of computer
science that is directed towards exploring the most difficult and exotic of all programming tasks:
mimicking or understanding cognition and intelligence. The people who are attracted to AI are
generally creative and bold, and the language designers and implementors follow in this mold, often
being AI researchers or former AI researchers themselves.

Lisp provides its peculiar set of characteristics because those features—or ones like them—were
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required for the early advances of AI. Only when AI was the subject of commercial concerns did
AI companies turn to other languages than Lisp.

Another attraction is that Lisp is a language of experts, which for our purposes means that Lisp
is not a language designed for inexpert programmers to code robust reliable software. Therefore,
there is little compile-time type checking, there are few module systems, there is little safety or
discipline built into the language. It is an anarchic language, while most other languages are
“fascist” (as hackers would have it [Raymond, 1991]).

Here are how some others have put it:

LISP is unusual, in the sense that it clearly deviates from every other type of program-
ming language that has ever been developed. . . . The theoretical concepts and implications
of LISP far transcend its practical usage.

—Jean E. Sammet [?, p. 406]

This is one of the great advantage of Lisp-like languages: They have very few ways of
forming compound expressions, and almost no syntactic structure. . . . After a short time
we forget about syntactic details of the language (because there are none) and get on
with the real issues.

—Abelson and Sussman[?, p. xvii]

Syntactic sugar causes cancer of the semicolon.

—Alan Perlis

What I like about Lisp is that you can feel the bits between your toes.

—Drew McDermott [?]

Lisp has such a simple syntax and semantics that parsing can be treated as an ele-
mentary task. Thus parsing technology plays almost no role in Lisp programs, and the
construction of language processors is rarely an impediment to the rate of growth and
change of large Lisp systems.

–Alan Perlis (forward to [?])

Pascal is for building pyramids—imposing, breathtaking, static structures built by armies
pushing heavy blocks into place. Lisp is for building organisms. . . .

—Alan Perlis (forward to [?])

Lisp is the medium of choice for people who enjoy free style and flexibility.

—Gerald Jay Sussman (intro to The Little Lisper, p. ix)

Hey, Quux: Let’s quit hacking this paper and hack Lisp instead!

—rpg (the final edit)



     

Gabriel and Steele, Evolution of Lisp 68

References

[ACM LFP, 1982] ACM SIGPLAN/SIGACT/SIGART. Proc. 1982 ACM Symposium on Lisp and Func-
tional Programming, Pittsburgh, Pennsylvania, August 1982. Association for Computing Machinery.
ISBN 0-89791-082-6.

[ACM LFP, 1984] ACM SIGPLAN/SIGACT/SIGART. Proc. 1984 ACM Symposium on Lisp and Func-
tional Programming, Austin, Texas, August 1984. Association for Computing Machinery. ISBN 0-89791-
142-3.

[ACM LFP, 1986] ACM SIGPLAN/SIGACT/SIGART. Proc. 1986 ACM Conference on Lisp and Func-
tional Programming, Cambridge, Massachusetts, August 1986. Association for Computing Machinery.
ISBN 0-89791-200-4.

[ACM LFP, 1988] ACM SIGPLAN/SIGACT/SIGART. Proc. 1988 ACM Conference on Lisp and Func-
tional Programming, Snowbird, Utah, July 1988. Association for Computing Machinery. ISBN 0-89791-
273-X.

[ACM OOPSLA, 1986] Proceedings of the ACM Conference on Objected-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’86), Portland, Oregon, October 1986. Association for Comput-
ing Machinery. ACM SIGPLAN Notices, 21:11, November 1986. ISBN 0-89791-204-7.

[Backus, 1978] Backus, John. Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs. Communications of the ACM, 21:8, pp. 613–641, August 1978. 1977
ACM Turing Award Lecture.

[Baker, 1978] Baker, Henry B., Jr. List processing in real time on a serial computer. Communications of
the ACM, 21:4, pp. 280–294, April 1978.

[Bartley, 1986] Bartley, David H., and John C. Jensen. The implementation of PC Scheme. In [ACM LFP,
1986], pp. 86–93.

[Bawden, 1988] Bawden, Alan, and Jonathan Rees. Syntactic closures. In [ACM LFP, 1988], pp. 86–95.

[Berkeley, 1985] Berkeley, Edmund C., and Daniel G. Bobrow, eds. The Programming Language LISP: Its
Operation and Applications. Information International, Inc. and MIT Press, Cambridge, Massachusetts,
1985.

[Black, 1985] Black, Fischer. Styles of programming in LISP. In [Berkeley, 1985], pp. 96–107.

[Bobrow, 1972] Bobrow, Robert J., Richard R. Burton, and Daryle Lewis. UCI-LISP Manual (An Extended
Stanford LISP 1.6 System). Information and Computer Science Technical Report 21, University of
California, Irvine, Irvine, California, October 1972.

[Bobrow, 1973] Bobrow, Daniel G., and Ben. Wegbreit. A model and stack implementation of multiple
environments. Communications of the ACM, 16:10, pp. 591–603, October 1973.

[Bobrow, 1985] Bobrow, Daniel G. METEOR: A LISP interpreter for string transformations. In [Berkeley,
1985], pp. 161–190.

[Bobrow, 1986] Bobrow, Daniel G., Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel. CommonLoops: Merging Lisp and object-oriented programming. In [ACM OOPSLA,
1986], pp. 17–29.

[Boehm, 1986] Boehm, Hans-J., Robert Cartwright, Mark Riggle, and Michael J. O’Donnell. Exact real
arithmetic: A case study in higher order programming. In [ACM LFP, 1986], pp. 162–173.

[Brooks, 1982a] Brooks, Rodney A., Richard P. Gabriel, and Guy L. Steele Jr. S-1 Common Lisp imple-
mentation. In [ACM LFP, 1982], pp. 108–113.

[Brooks, 1982b] Brooks, Rodney A., Richard P. Gabriel, and J Steele, Guy L. An optimizing compiler for
lexically scoped LISP. In Proceedings of the 1982 Symposium on Compiler Construction, pp. 261–275,
Boston, June 1982. ACM SIGPLAN, Association for Computing Machinery. ACM SIGPLAN Notices,
17:6, June 1982. ISBN 0-89791-074-5.



     

Gabriel and Steele, Evolution of Lisp 69

[Brooks, 1984] Brooks, Rodney A., and Richard P. Gabriel. A critique of Common Lisp. In [ACM LFP,
1984], pp. 1–8.

[Burke, 1983] Burke, G. S., G. J. Carrette, and C. R. Eliot. NIL Reference Manual. Report MIT/LCS/TR-
311, MIT Laboratory for Computer Science, Cambridge, Massachusetts, 1983.

[Burstall, 1971] Burstall, R. M., J. S. Collins, and R. J. Popplestone, eds. Programming in POP-2. Edinburgh
University Press, 1971.

[Campbell, 1984] Campbell, J. A., ed. Implementations of Prolog. Ellis Horwood Limited, Chichester, 1984.
ISBN 0-470-20045-6. Also published by John Wiley & Sons, New York.
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