
 

Work In Progress

 

 1

 

Self-Sustaining Systems

 

Richard P. Gabriel

Distinguished Engineer, Sun Microsystems, Inc.

 

I have a small laboratory at Sun Microsystems which is just embarking on a research program on what

we call “self-sustaining systems.” A self-sustaining system is any combination of hardware and software

which is able to notice errors, inefficiencies, and other problems in its own behavior and resources, and

to repair them on the fly. We imagine that such systems will be quite large and that they might exhibit

both hardware and software failures. This means that some of the failures will be intermittent or based

on coincidences—of placement, of timing, and of naming.

We plan to explore a number of approaches, some inspired by good engineering principles, some

inspired by biological mechanisms and mechanisms or principles from other disciplines, and some

deriving from a reëxamination of accepted practices in design, coding, and language design. For exam-

ple, we expect to examine the following:

 

•

 

there is an existing practice in high-reliability systems, especially in telecom software and equipment,

in real-time and embedded systems, and in distributed real-time and fault-tolerant systems, which

use resource estimation, checkpointing, and rollback—among other techniques—to ensure proper

operation. We plan to examine the literature, mostly in the form of software patterns and pattern lan-

guages to determine what can be used for self-sustainability.

 

•

 

most programming languages are designed for running (correct) algorithms embodied in correct

programs, the design center being the easy expression of precise calculations. But this is perhaps

contrary to the needs of some parts of self-sustaining systems, which must be able to express the

observation of running programs and alter their running behavior, and programs written to do this

must be highly tolerant of errors of their own. Such robustness of an observational layer can perhaps

be achieved by operating only on “safe” data or by being declarative or reactionary. We expect to look

at programming constructs aimed at expressing temporal reasoning about and operations on pro-

grams more intuitively than is done now with low-level synchronization primitives.

 

•

 

our intuition is that one key to self-sustaining programs is an observational, programmable layer

which not only observes, interrupts, and alters, but which consists of decaying persistent memory.

This intuition is hard to express. We imagine that this secondary layer is “soupy” and uses gradients

to convey and combine information in an almost geometrical manner. For example, suppose there is

a distributed system in which patterns of information flow vary over time. If a particular data struc-

ture is subject to frequent repair, it might be correlated with information flow which might persist or

repeat, or which might be transitory. The traces of these events, if kept forever, might prove too com-

plex to analyze; but with repetition, the pattern of causation might be reinforced and the amount of

data to plow through would be greatly reduced. Another example is a tightly packed multiprocessor

which can suffer heat-related failures when heavy-duty computations take place on them. Imagine an

observational layer that is monitoring heat and memory or computation failure rates. If the observa-

tional memory were to hold data about the heat or failure rate and treat it like dissipating heat or dis-

solving chemicals, then adjacent memory and computational elements would “inherit” some of the

characteristics of the problems and computations would not be scheduled onto them as frequently,

thereby reducing errors by moving computations away from overheated areas.

Part of this intuition is that the observational layers need to be simpler to program than the real com-

putational layers, so that correctness of code running there is easier to show or if possible, irrelevant.

Another part is that the stuff of which this layer is made must be fundamentally more robust or at

least less fragile than the tightly wound stuff that makes up the base layer. One way to accomplish



 

Work In Progress

 

 2

 

this is to make this layer not computationally complete, but highly limited and based on rudimentary

operations.

 

•

 

after reading the work of Martin Rinard and his students at MIT, we believe that repairing deviations

from “acceptable” behavior is a good approach for certain types of robustness. One way to think of

this is that the supposed tight bounds on what would be considered correct behavior is often artifi-

cially too restrictive. For example, in triangle-based rendering, degenerate triangles causing division

by 0 in some algorithms can probably skip expensive checking for degeneracy and use a quick excep-

tion-handling mechanism to return a fixed value, since all that might happen is that a handful of pix-

els in a gigantic image might have a slightly wrong color. What is acceptable to a self-sustaining

system might be much more diverse (or forgiving) than a single execution path.

 

•

 

many programming languages shortchange exception handling, treating them, well, like exceptions.

In living systems, a large fraction of the mechanisms at various levels are concerned with preserva-

tion, conservation, and repair, while in an exceptionally careful software system, perhaps 5% of the

mechanism are devoted to such things. We believe that many exception handling systems are not

only unsuitable for programming self-sustainability, but the mechanisms themselves break modular-

ity, causing additional errors due to programming mistakes

Self-sustainability and self-awareness appear to be related, perhaps only at the implementation level, but

perhaps conceptually as well. A self-sustaining system performs some degree of reflection and can alter

its own behavior based on what it sees, and this is what a self-aware system does. 


