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Programming language design combines the art of invention with judicious adaptation
and rejection of ideas previously tried. This chapter presents aspects of the design of the
Common Lisp Object System (CLOS) in the context of related ideas from many languages,
providing a view of the CLOS within a broader space of designs.

CLOS is the latest in a long history of additions of object-oriented extensions to Lisp. But
CLOS is the first such extension that integrates the type and class systems, and provides
a uniform client interface for calling ordinary functions and functions implemented in an
object-oriented style.

CLOS is also designed with three constraints not found in other object-oriented exten-
sions. The first is to provide essential compatibility with other previously used object-
oriented LISP facilities, such as the Symbolics Flavors system. Essential compatibility im-
plies an easy path for transforming programs, supporting the most frequently used capabili-
ties in such systems. The second constraint is that CLOS is to facilitate experimentation with
new language features in a way that allows them to integrate but not interfere with the kernel
of the system. The third is that CLOS kernel facilities are to be efficiently implementable on
a wide range of hardware, from special purpose Lisp machine to RISC processors. The CLOS
metaobject protocol[18] supports these three constraints by making available to the user and
system developer a specification for the interpreter for the language, and an object-oriented
protocol that supports extension. (Actually the metaobject protocol provides only a partial
specification—for only some steps—of the processing of CLOS. If certain customizations of
those steps are made by the user, the effect is as if the interpreter were customized.)

The four sections of this chapter provide four projections of the design space for object-
oriented systems. In each, we characterize the range of variability found in current pro-
gramming practice, locate CLOS in this context, and then explore extensions that might be
coherently added to CLOS. The extensions are important for two reasons. First, a language
must be judged not only on what it contains, but on what it leaves out. The extensions
are facilities that could have been included in CLOS, but only with the attendant risk of
complicating standard practice and reducing understandability. Secondly, these extensions
show how the CLOS metaobject protocol provides a smooth continuum of capabilities from
system developer to user.

The first section explores four traditions in which incremental definition of operations has
appeared. These include the object-oriented programming (OOP) languages, data-driven
interpreters, pattern-directed languages, and languages with polymorphism. Incremental
definition is important because it supports (i) conceptual separation of the interface and im-
plementation(s) of an operation, (ii) extension and specialization of the domain of operations
with new implementations.

The second section focuses on the concepts of class and type. It distinguishes five notions
of type and shows different ways the introduction of classes into a language can interact
with the type system. The CLOS choice of making classes support the entire type system is
important in moving all of Common Lisp towards being object-oriented.

The third section on factoring descriptions focuses on use of mixin classes, and on combin-
ing and enhancing methods. Factoring descriptions in a programming language is important



because it makes possible more and finer grained reuse of programs, and hence supports
greater programming productivity.

The final section, on reflection, looks at the issue of embedding self-description within
the system with first class objects that represent program elements. Reflection facilitates
programmatic introspection, interpreter extension, and incremental program development.
Reflection is important because it allows the use of a programming language to support the
programming process itself.

2.1 Incremental extension of operations

Some operations make sense only on a particular type of data. For example, string-length
requires its argument to be a string. But often there is a generic operation with a core
of common meaning, like length, that makes sense for many different types of data. For
such a generic function the code to be run must depend on the data type of the argument
provided. Such polymorphic functions, as they are sometimes called, exist in a number of
different programming languages. In languages like Lisp, where lambda abstraction is the
primary extension mechanism, a function is usually defined by a single, monolithic piece of
code; any implementation conditionality that depends on the types of passed parameters is
expressed as code explicitly programmed in by the user.

In contrast, a partitioned operation is one in which the implementation for each type can
be separated textually. This allows incremental extension of an operation, without requiring
modification or even access to the original source. The CLOS notion of generic functions
supports automatic dispatch to separately defined, type-specific implementational parts.
CLOS implementational parts are called methods. CLOS automatically combines them in
a single generic function, with system-generated code embedded in the generic function to
select the appropriate implementation at run-time. In the CLOS system, the definition of a
generic function can be extended incrementally at any time by defining a new method.

As a simple example, suppose one wanted to define a symbolic differentiation program
in CLOS. One might start with class definitions such as the following:

(defclass algebraic-combination (standard-object)
((sl :initarg :first :accessor first-part)
(s2 :initarg :second :accessor second-part)))

(defclass symbolic-sum (algebraic-combination)

)

(defclass symbolic-product (algebraic-combination)

0)

These definitions specify that symbolic-sum and symbolic-product, both subclasses of
arithmetic-combination, each have two slots, accessed with functions first-part and
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second-part. These classes describe instances used to represent algebraic combinations.
For each class of algebraic combination we define an independent method for implementing
deriv. Here are two such method definitions:

(defmethod deriv ((expression symbol) variable)
(if (eq expression variable) 1 0))

(defmethod deriv ((expression symbolic-sum) variable)
(make-instance ’symbolic-sum
:first (deriv (first-part expression) variable)
:second (deriv (second-part expression) variable)))

The deriv operation is invoked by standard function calling syntax, because it is im-
plemented as a standard procedural interface. Suppose exp is bound to a structure that
represents an algebraic expression; then the following computes its derivative with respect
to the variable X:

(deriv exp ’X)

The deriv generic function will use the type of the expression bound to exp to select a
method to be called. The method definitions shown support only two of the cases required for
complete differentiation. As classes to support other algebraic combinations are introduced,
corresponding methods can be defined, thus incrementally extending the deriv operation.
A new method can be defined without having to change the sources of previously defined
methods and classes. These new definitions can be added even after previous definitions have
been compiled, and instances of the structures have been created. Furthermore, any client
of the deriv function need not worry about whether deriv is implemented as a function or
generic function. The procedural abstraction barrier is still in force.

Although the concept of generic functions is familiar, its role as the foundation of object-
oriented programming in Lisp is relatively new. Earlier inclusions of object-oriented pro-
gramming in Lisp incorporated the message-passing style typified by Smalltalk, which is
only one of a number of programming traditions supporting incrementally defined imple-
mentations with automatic choice of code. The data-driven tradition uses an element of an
argument as a key to choose the implementation; in pattern-directed invocation, the struc-
ture of the arguments are used to select an invocation; in the polymorphism tradition, the
types of the arguments provide the basis for implementation selection (usually at compile-
time). We examine each of these traditions in turn, arriving at a set of dimensions that allow
us to understand the space of language design tradeoffs.

2.1.1 Object-Based Programming Tradition

The object-based programming tradition is usually identified with message-passing. A mes-
sage containing the name of an operation and arguments is sent to a receiver. The receiver
and the name of the operation are jointly used to select a method to invoke.



For example, in Smalltalk [15] the solution to the symbolic derivative problem above
might define a class for SymbolicSum:

class: AlgebraicCombination
instance variables sl, s2
class methods:
instance creation
of: first and: second
Tsuper new setargs: first and: second.
instance methods:
private
setargs: first and: second
sl«first. s2+—second.

class: SymbolicSum
superclass: AlgebraicCombination
instance methods:
deriv: variable
TSymbolicSum of: (sl deriv: variable)
and: (s2 deriv: variable).

As in CLOS, an expression is represented as a nested composite of objects (like a parse
tree), and each class has a method that defines how it responds to a message whose selector
is deriv:. Thus, the expression

(sl deriv: variable)

is understood as sending a message to s1 with selector deriv: and argument variable.

Smalltalk occupies one particular point in a spectrum of object-based programming styles.
In Smalltalk the structure of instances, as in CLOS, is determined by class definitions. In
Smalltalk methods are much more strongly associated with classes than in CLOS, and are
thought of as belonging to the classes. Sharing is done through class-based inheritance
of methods and structural descriptions. The Self system [27] is very similar to Smalltalk.
However, in Self, methods are thought of as belonging to individual objects. Sharing behavior
is done by delegating an operation to another object. Delegation to other objects can be
done in both CLOS and Smalltalk in ad hoc ways, but Self provides language support for
delegation.

Lisp is a language with a syntax based on function application, while Smalltalk and Self
are message-based languages. There is a difference in syntax for invocation of operations
between CLOS on one hand, and Smalltalk and Self on the other, which reflects this dis-
tinction. In functional application languages, the operation appears leftmost in a function
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call form, which indicates primacy in Western tradition. In object-oriented languages, the
receiver object appears leftmost. In early mergers of object-oriented programming and Lisp,
a send operation was introduced to perform message-passing; its leftmost argument was the
receiver object. Both definitions operator invocations looked much like those in Smalltalk.

2.1.2 Data-driven Dispatch

The data-driven tradition is based on the technique of explicitly dispatching to a first-class
function determined by some aspect of relevant data such as the arguments to an operation.
First-class functions are needed because in most cases a function must be fetched from a data
structure and invoked based on the relevant aspect of data. (It is sufficient for the language
to have a means to store pointers to functions and be able to invoke a function given a pointer
to it. The language C satisfies this condition.) However, generally the dispatch is done in an
ad hoc manner, meaning there is no language-supported mechanism. For example, suppose
that algebraic expressions are represented in Lisp as lists with prefix arithmetic operators:

(+ (expt X 2) (x 2X) 1)

The following could be the driver for a data-driven symbolic differentiation program where
each differentiation rule is implemented by one function in a table:

(defun deriv (expression variable)
(if (atom expression)
(if (eq expression variable) 1 0)
(funcall (get-from-table (first expression)
xderiv-tablex)
(rest expression)
variable))))

The way to differentiate a sum is to sum the derivatives, and this behavior can be added
quite easily:

(add-to-table *deriv-tablex ’+
#’ (Lambda (expressions variable)
‘(+ ,0(mapcar #’(lambda (expression)
(deriv expression variable))
expressions))))

The data-driven tradition has been used extensively in symbolic algebra and artificial intel-
ligence.



2.1.3 Pattern-directed Invocation

Pattern-directed invocation provides a means for the programmer to describe the arguments
on which a particular clause of a definition is to operate. More specifically, the choice of
what to do is dependent on the morphology of the argument expression. Pattern-directed
invocation can be used with a number of different control structures. It is a cornerstone
of production system (rule-based) languages like OPS-5 [4], and characteristic of backward
chaining rule languages, such as Prolog [9]. A Prolog program to differentiate an expression
might look like this:

deriv([+ X Y],V, [+ DX DY]) <= deriv(X,V,DX), deriv(Y,V,DY).

deriv([* X Y],V,[+ [* X DY] [* Y DX]]) <= deriv(X,V,DX),
deriv(Y,V,DY).

deriv(X,X,1).

deriv(X,Y,0).

And it would be invoked like this:
deriv(expression,variable,result)

Each clause is simply a relation that states that the left-hand side of the clause holds true if
the right-hand side does. A clause with an empty right-hand side indicates that the left-hand
side is always true. The control structure for backwards-chaining pattern-directed languages
is that of a goal statement whose unknowns are eliminated by matching the left-hand sides
of clauses against the goal statement or a part of it, and replacing the goal by zero or
more subsidiary goals obtained from the right-hand side of the matching pattern, along with
possible execution of attached code.

Sometimes several left-hand sides match, or a single left-hand side can match more than
one way. In this case, one of the matches is chosen. If this choice is successful through
backward chaining, a solution has been found. If the backward chaining meets with failure,
then by backtracking, other solutions can be found. To find all solutions, the program is forced
to backtrack after each solution. Sometimes, to shorten the running time of a program, it is
necessary to prune backtracking. There is an operator, called cut, that prevents backtracking
due to failure from retreating beyond a certain point.

Matching a data description to a set of supplied arguments is a succinct, powerful way
to describe the code selection process. Backtracking control structure makes sense in a
problem-solving setting where the issue is search. In production system programming, the
conflict that arises when more than one left-hand side matches is resolved differently. In
some systems, only the most specific matching rule is fired. In some systems all applicable
rules are fired once. There is no concept of failure; each rule firing brings about changes
in the workspace, and these changes make new rules applicable. Thus the concept of using
pattern-driven selection of code is independent of the control structure of the higher level
program in which it is embedded.
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2.1.4 Polymorphism Tradition

Some languages have polymorphic operators [8]. A polymorphic operator is one that can
accept arguments of a variety of types or classes. It is typical of languages in the poly-
morphic tradition that multiple arguments can be used for selection of the implementation
and that the selection is usually done at compile-time on the basis of a description of the
arguments. Burstall [5] has called this ad hoc polymorphism. He contrasts this with uni-
versal polymorphism, where because the representation of arguments is uniform, the same
code can be executed by the operator for any types of the arguments. As an example of
universal polymorphism, consider the Lisp function to reverse a list. It depends only on the
representation of a list cell as a pair consisting of a pointer to a data element and a link to
the next list element. The pointer to the data element is of uniform shape. Hence reverse
can operate on lists of numbers, lists of symbols, and lists of numbers or symbols—lists of
anything, really. Therefore, the types of the objects stored in the lists are irrelevant.

As an example of ad hoc polymorphism, FORTRAN has polymorphic arithmetic oper-
ators where the implementation chosen is based on the types of the arguments. Types of
variables are determined by the first letter of variable names. The rule is that any variable
whose name begins with the letters I,... N refer to fixed point numbers while all others
refer to floating point numbers. Types of expressions are based on the known result types of
polymorphic operations with known argument types. For example, the code fragment I+J
is a fixed point addition while X+Y is a floating point addition, and X+I returns a floating
point result with an implied coercion.

At compile-time, the appropriate operation is chosen based on the apparent type of the
arguments. FORTRAN does not allow users to define such polymorphic operations. C++
supports ad hoc polymorphic operations; operations of the same name which take different
types of arguments are simply treated as independent. Users can add extensions to most
polymorphic operations. For example, users can define a polymorphic function size that
takes an argument of type string, and another of the same name for an argument of the user-
defined structure type shoe. The C++ compiler will choose at compile-time the appropriate
implementation to use based on the statically declared or inferred type of the argument in
the calling code. The declared types of multiple arguments can be used to make this choice.

Common Lisp even before CLOS had some polymorphic operators. All the built-in Lisp
arithmetic operators perform type-specific operations depending on the types of the actually
supplied arguments. For example, evaluating the expression (+ x y) does floating point
addition if the value of either x or y is a floating point number; if one of them is not floating
point, it is first coerced to floating point.

The difference between the FORTRAN and Lisp notions of arithmetic polymorphism is
that FORTRAN determines the operator implementation at compile-time, while Lisp usually
delays the decision to run-time. More about this flexibility will be discussed below.

In CLOS, any of the argument parameters of a method definition can likewise be con-
strained by a class specification. This allows all the arguments to a generic function—mnot
just the first one—to participate in method selection. This is unusual in class-based systems.



2.1.5 Categorizing Language Families

There are four styles for object-oriented systems: object-centric, class-centric, operation-
centric, and message-centric.

In object-centric systems, objects have state and associated operations [28]—structure
and behavior—but there is no special provision for classes. Object-centric systems provide
a minimal amount of data abstraction. Sharing may be achieved through delegation.

Class-centric systems give primacy to classes: Classes describe the structure of objects,
contain the methods defining behavior, provide inheritance topologies, and specify data
sharing between objects.

Operation-centric systems give primacy to operations: The operations themselves contain
all the behavior for objects, but they may use classes or objects to describe inheritance and
sharing.

Message-centric systems give primacy to messages: Messages are first-class, and carry
operations and data from object to object; but they also may use classes or objects to
describe inheritance and sharing.

Wegner [28] uses the term object-oriented programming for object-based systems with
classes that support inheritance.

In class-centric and object-centric languages, the class or object is highlighted rather than
operations; the object receives the operation name (or message), which it examines to de-
termine what to do. But in functional languages, the operation is in control—arguments are
passed to the code implementing the operation, and that code might examine the arguments
to determine what to do. Only operation-centric systems support discrimination for method
selection on multiple arguments because there is no accepted notion of a sequence of objects
receiving a message. CLOS is a combination of class-centric and operation-centric.

These four styles can be divided into two independent axes which can be used to partition
the space of languages and programming traditions, as summarized in the following table.

’ H message-centric \ operation-centric ‘

class/type-centric || Smalltalk CLOS
C++ virtuals C++ overloads
FORTRAN
object-centric Self Prolog
Actors Data-driven programs

2.1.6 Characterizing Partitioned Operations

A partioned polymorphic operation is an operation that is incrementally defined, potentially
at different times in the development of a program, and usually at several different textual
points. The meaning of the operation is determined in part by bringing together the textually
separated parts of the definition into one piece, and possibly by considering the compile-
time and/or run-time context of the operation. The context is determined by the nature
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of the arguments (usually their type) and possibly by a wider context. Thus the design
space of polymorphic languages can be categorized by a number of different independent
characteristics.

The first is whether the selection of the implementation is at compile-time or at run-time.
Smalltalk method selection is done only at run-time based on the class of the object. At
the other extreme, FORTRAN only has compile-time selection of operations based on the
(implicit) type declarations of its variables. Common Lisp is an example of a language that
has chosen to let the programmer decide where along this compile-time /run-time spectrum to
lie. This decision is driven by the number and nature of optional declarations the programmer
supplies. C++ also lets the programmer decide, but with less flexibility than CLOS: C++
has overloads, whose implementations are selected at compile-time based on the declarations
provided by the programmer; C++ also has virtual functions, whose implementations are
selected at run-time.

A language is not object-oriented according to Wegner[28] unless there is some form of
run-time polymorphism.

The second characteristic is whether polymorphic operators are defined only for system-
defined operators or whether the programmer can define them. For example, C++ provides
mechanisms for user-defined compile-time and run-time polymorphic functions; but FOR-
TRAN does not provide any means for users to define polymorphic operators.

The third characteristic is whether operators are polymorphic in one or more than one
argument. CLOS provides polymorphism for all required arguments. C++ overloads pro-
vide compile-time polymorphism for several arguments; but, asymmetrically, virtual member
functions are polymorphic only on their first arguments even though overloaded functions and
virtual member functions have the same client syntax. FORTRAN provides compile-time
polymorphism based on all the arguments to an arithmetic operation. However Smalltalk,
as with most message-centric languages, only provides language support for selection based
on the class of the first argument of the operation (the receiver of the message).

Multi-argument polymorphism can be emulated in message-passing systems, but at a
cost. Selection based on several arguments can be simulated by a sort of currying. Typically,
a series of messages is sent, each further refining the choice of the real method. Each class in
the chain calls a new message that captures in its name (selector) the classes of arguments
seen so far; the last object in the series selects the appropriate method based on the resultant
compound selector[16]. For example, in Smalltalk, sending the message

aCircle display: aScreen

is converted by a method on the class Circle to the message
aScreen displayCircle: aCircle

which captures in the selector name the type of the graphic object to be displayed on the
screen.

A consequence of multi-argument polymorphism is that methods are now associated with
more than one class; it is no longer possible to think of a single class as the owner of the
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method, since each method parameter may refer to a different class. In CLOS, the generic
function owns the methods, and its overall type signature involves the set of classes on which
the applicable methods are defined.

The fourth characteristic is whether the descriptions of the arguments are restricted to
types or whether other descriptions are possible. In CLOS, object identity—in addition to
object type—can be used as a description. For example, a method can be defined that is
applicable only when the actual argument is EQL to the object in the parameter specification
(these are called eql specializations.) Neither Smalltalk nor C++ supports selection on
anything other than the classes of the arguments.

A fifth characteristic is whether the syntax of the call to a generic operation must be
different than the syntax for an ordinary operation; for example, does it force the client to
focus on some particular argument—and hence use a message-passing style—or does it allow
the client to focus on the semantics of the operation regardless of whether it is implemented in
a generic way or not. For Lisp, the extension of ordinary functions to become generic, rather
than the addition of a new message-passing syntax, is suggested for a number of reasons.
First, generic functions are a natural extension of the pre-existing Common Lisp type-generic
functions such as the numeric functions. Second, their use helps achieve consistency for client
code—all operations are invoked using function call syntax. This insight was behind the
switch in New Flavors [20] to use generic functions, even though methods were thought of
as belonging to the class of the object which was the first argument to the generic function.

2.1.7 Extensions

CLOS supports run-time polymorphism based on the types of one or more required argu-
ments (actually, on the subset of data types that correspond to classes). The ability to do
something like pattern-directed programming is minimally supported by the ability to define
a method whose selection is dependent on the identity of one or more of its arguments. For
example, if we replaced the call to make-instance in the deriv method for arithmetic-sum
with a call to make-sum we could include some automatic expression simplification in the
generic function dispatch mechanism by using the following methods:

(defmethod deriv ((expression symbolic-sum) variable)
(make-sum (deriv (first-part expression) variable)
(deriv (second-part expression) variable)))

(defmethod make-sum (first second)
(make-instance ’symbolic-sum
:first first
:second second))

(defmethod make-sum ((first (eql 0)) second)
second)
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(defmethod make-sum (first (second (eql 0)))
first)

A useful extension of this capability not currently supported by CLOS would be to
support a matching process like that used in rule-based languages, where method selection
can be based on the structure of arguments. By structure, we mean specifying a method
that is applicable when an argument is an object with specified values in its slots.

Let us consider an example. Suppose we have a general method for finding how far a
movable-object is from the origin. On a slow arithmetic processor, it might be worth while
to have a specialized method for the case where the object was at <0,0>. The following
is a suggestive syntax that might be used to specify this special case for an instance of
movable-object whose slots x and y are both eql to 0:

(defmethod distance-from-origin
((x (:class movable-object
:slots (x (eql 0))
(y (eql 0)))))
0)

Such a structure-based specification would make it easier to customize behavior to particular,
well-described situations, similar to those used in pattern-directed languages.

Another possibly useful extension to CLOS would add parametric types as a way of
specifying the scope of a method. For example, it might be useful to define a method like
the following:

(defmethod add
((x (:class list :elements number))
(y (:class list :elements number)))
(mapcar #’+ x y))

The new payoff here is the ability to state concisely what would otherwise be expressed
as explicit conditional code in the body of a function. In general, one can consider as a
candidate extension the abstraction of any initial test of the arguments with branches to
separate code depending on the outcome. The branching can be made part of the generic
function dispatch, and hence allow new branches to be defined incrementally.

For all these extensions, the expectation is that a metaobject protocol for CLOS [18§]
can simplify the implementational effort. The idea is that for each extension, all that would
be needed are new classes of generic functions and specializers that provide the appropriate
behavior through specialized methods on generic functions defined in the protocol. Given
the design of a metaobject protocol, it should be possible to add these extensions without
interfering with the kernel language of CLOS. Of course, the detailed issues of the syntactic
portions of the extensions require careful attention. This dimension of extensibility through
a metaobject protocol is unique to CLOS, and was not included in the characterizing dimen-
sions described above.
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As so far described, selection of a method has only been dependent on the arguments
to an operation and not on any characteristics of the operator or the environment in which
the operation is being done—except insofar as the class of the generic function dictates the
entire method dispatch and effective method construction mechanism. In some situations,
it might be useful to use exogenous features for method selection. As illustrative examples,
one might include the process in which the operation is being done or the types of returned
results. Artificial intelligence applications might make use of the latter extension to select
an operation based on a description of the desired effect. An early example of a system
constructed on this principle can be found in [13].

2.2 Classes and Types

The Common Lisp type system existed before the incorporation of CLOS. There were a
number of built-in structures. The defstruct extension mechanism provided for defining
new types of composite objects. Types are distinguishable at run-time by a set of built-in
predicates; defstruct extends the set of available predicates.

In addition to this structural notion of type, Common Lisp extended the notion of type
to include general run-time predications, which can select out subsets of pre-existing data
types. To add a new predication type, the deftype construct would associate a type symbol
to the specified Lisp predicate. Finally, Lisp supports the notion of declarations of types
within programs. Such declarations specify expected types for particular inputs and outputs
of functions. These declarations are used by some compilers for optimization of code.

CLOS introduced classes as the primary means of specifying both new composite data
structures and the applicable domains of methods. It was a goal of the CLOS design to
allow methods to be defined on pre-existing Common Lisp types. To achieve this goal,
CLOS supports the notion of classes separate from, but integrated with, Common Lisp
types. In doing this, it became apparent that there were at least five different meanings
of “type”: declaration types, representational types, signature types, predication types and
methodical types.

Declaration types are a feature of the program text. They specify an invariant for the
program such as what values can be stored in a particular variable or structure. Such
declarations allow humans to reason about the behavior of their programs. They allow
linkers to check whether programs obey rules of program composition. Declarations allow
compilers to partially validate program correctness and to make code optimizations.

A representational type is one that defines the storage layout of objects at run-time.
Often a special run-time representation is used to provide an optimization in space or time
for frequent operations. For example, a Lisp fixnum is a special representational type for
small integers allowing them to be efficiently stored in a single word of memory. Since small
integers are used quite frequently, this can be a big savings. When compiling an invocation
of a generic arithmetic function, a Lisp compiler may emit code specialized to a more efficient
type representation such as a fixnum based on static type inferencing.
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A hierarchical representational type system can be defined where the leaves of the type
hierarchy are basic representational types and the composite type nodes (interior node) are
boolean combinations of subnodes. This is how the Common Lisp type system is defined,
where the basic set of datatypes are the representational types. For example, the type 1list
is defined to be the same as (or null cons).

A signature type is one defined by the operations that can be performed on objects. Such
a type is sometimes called an abstract data type. In this view, the primary distinction
between a cons and a number is their signatures—given a cons, one can read and alter its
car and cdr components; given a number, one can perform arithmetic calculations with it.
Both integers and reals support a signature that includes the four basic operations (+, -, *,
/).

A methodical type is one which can be used to specify the domain of applicability for a
method. Methodical types are a feature of program texts. Classes in most object-oriented
languages are the primary example of methodical types. In C++ the equivalent of methods
(virtual functions) cannot be defined on base datatypes. Virtual functions can only be
written for user-defined classes. Thus the C++ base datatypes are nonmethodical.

A predication type is one that can be distinguished at run-time by a type test. Compile-
time only systems such as C++ provide no predication types, since there is no run-time
type system. Common Lisp has extended the notion of type to allow general predications.
Smalltalk does support finding out the class of an object at run-time, but provides no
language support for doing type testing.

We can characterize these notions of type across two axes, as shown in the table below:

’ H program text feature ‘ run-time feature ‘

structure | declaration type representation type
defclass/defstruct predication type
operation || methodical type signature type

These different meanings of type are not mutually exclusive. A type system based purely
on representational types can also be a consistent signature type system, just as a methodical
type system can be a valid signature type system. In fact, representational types are often
designed to support specific operations. A methodical type system can also be based on
storage layout (representational) decisions.

Some aspects of representational types will always be necessary, at least implicitly. For
example, the mechanism by which the class of an object is determined almost always involves
a selection based on representational information. Furthermore, objects usually can store
data, and the mechanism for such storage and retrieval is representational.

There are three design dimensions regarding issues of classes and types: whether me-
thodical types include system-defined types or only user-defined classes; whether new bit-
pattern-level representations for objects can be defined along with methods on those new
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representations; and whether declarations about methodical types can be used to optimize
code.

With respect to the first dimension—the inclusion of system-defined types—Smalltalk,
C++, and CLOS run nearly the entire gamut. In Smalltalk types and classes are identified;
there is no semantic difference between those supplied by the system and those defined by
the user. In C++, the only methodical value types—those for which the user can declare
methods—are user-defined classes. In CLOS, types and classes are separate concepts; every
class corresponds to a unique type, but not every type has a corresponding class. For
example, many compound types (i.e., (or cons integer)) are not classes, but correspond
(at most) to the union of several classes.) Most such compound types cannot be classes
because there is no unique representation for such an object, and there is no intuitive for
notion making an instance of one. Also, predication types in general do not correspond to
classes, but merely to a filtering of some pre-existing type (or, set).

However, in order to cover all system-defined data types, CLOS defines a set of classes
which span the pre-existing Common Lisp types; one set of types spans a second set of types
if every object in the second set is a member of at least one type in the first spanning set.
The CLOS spanning set is large enough to encompass most representational distinctions
within Common Lisp implementations, but small enough that each system-defined data
type is directly covered by a single spanning type. This allows implementors to retain
their historic, low-level optimizations based on representational types. For example, in the
spanning set of classes there is a class named float that corresponds to the type float. The
type float has 4 subtypes, short-float, single-float, double-float, and long-float.
Implementations of Common Lisp are not required to support distinct types corresponding
to these subtypes of float, and therefore CLOS does not requires classes for them either.

But most importantly, the use of a spanning set of classes respects abstraction barriers
by using the same syntax for polymorphic functions written on system-defined data types
as for those written on user-defined classes.

With respect to the second goal—extensibility for new representational types—none of
Smalltalk, C++, or Lisp allow the user to define representational types. For Lisp, there is no
standard way to recognize a representational type. However, any particular implementation
can add a new representational type provided it extends the system implementation for
class-of. For example, in Symbolics CLOS a separate flavors-class is maintained as
a metaclass, and class-of is able to distinguish Flavor instances from all other types and
classes.

With respect to the third goal—the use of declarative types—C+-+ uses strong, static
typing as much as possible, and Smalltalk uses only run-time typing. Common Lisp has a
rich, extensible, but optional declaration syntax; although implementations are not required
to do any static type-checking based on a program’s use of type declarations, a number of
compilers take full advantage of this feature, especially for optimization. For example, some
Common Lisp compilers are able to achieve nearly the same performance as C on certain
benchmarks [14].
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2.2.1 Extensions

The possible type-oriented extensions to CLOS correspond to the distinct meanings of type:
representational, signature, methodical, predication and declarative extensions.

A representational extension would provide support for users to define new representa-
tional types. This has two requirements. The first is specifying how the system can recognize
this type. This might include patterns of the data itself, or using part of the data address
to index into auxiliary tables, or some combination. The second requirement is to extend
class-of (including the version of class-of used in method dispatch) so that for all rep-
resentational types a class can be quickly determined. It would be nice if this extension
of class-of could use a method-definition-like syntax, and specialize on representational
types. The implementation of selection for such “representation” methods would of course
not use the standard class-of itself.

What makes adding this extension difficult is that Lisp systems come with a large body
of compiled code. That compiled code builds in certain assumptions about how the class can
be found for any instance. Because class-of is crucial for the performance of the system,
optimizations are used. Some of these optimizations would have to be undone to make an
extended class-of work. This may be impossible because sources are unavailable for the
average user, or at least inadvisable because the wrong kind of extension could slow the
whole system even when the feature is not used. This is the same issue that prevents the
functions that exist in Common Lisp from being made all generic functions— they have been
defined and compiled with certain fixed assumptions that are difficult, if not impossible, to
undo.

A signature extension would make signatures be first class objects, in some way similar
to classes. No structural information would be associated with signature objects. They
would carry the contract for the operations they support. For example, one could define
a signature type for stack, one that supported at least the operations push, pop, top, and
empty. A slightly more sophisticated notion of a signature would include constraints on the
operations, such as (pop (push x <stack>)) = x.

A signature type could be made a methodical type, for example, in defining a push-down
automata, any object that can act like a stack would do.

(defmethod interpret-automata
((input string) (m state-machine) (s stack))

o)

Making signatures be first-class types is a useful step in separating implementation inheri-
tance from notions of abstract data type inheritance[23].

Given this definition of signature type, there is a natural extension to a notion of in-
heritance for signature types. A derived subsignature is built by adding new operations to
an existing signature, or generalizing existing operations; that is, a subsignature type would
have additional operations or operations with domains that were supertypes of the domains
of the supersignature type and ranges that were subtypes of the ranges of the supersignature

type.
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Making signatures be first-class is a step towards defining a formal notion of a protocol.
Currently protocols are only defined informally (as in the CLOS MOP). One useful constraint
on protocols might be that of limiting the signatures that classes supporting the protocol
must support. However, signatures do not provide a sufficiently rich language to specify all
that is needed for defining a protocol. In the MOP[18], we find other kinds of statements; for
example, sometimes redefining one method of a protocol requires redefining other methods.
Some methods can be only enhanced, not overridden. Some methods must call a specified
generic function. No good language yet exists for specifying protocols whose constraints are
at least as broad as in the CLOS MOP.

Although signature types are clearly conceptually useful, can they be added to CLOS
without an unacceptable loss of performance? It may be an expensive operation to check
if an object’s class supports a set of operations. However, after first use of an object of a
particular class, caching techniques like those described for PCL[17], can significantly reduce
the cost. A simple check of class identity is sufficient to ensure applicability and specificity on
repeated calls to these generic functions, even though the methods have a domain specified
by signature.

Another natural extension that has been suggested for CLOS is to allow any set-theoretic
combination of methodical types—a methodical extension. So for example, one could specify
finite ranges of integers as a disjunction of EQL specifications. The problem in CLOS is that
the built-in protocol for method combination (see next section) requires applicable methods
to be sorted into a total order based on specificity of domain specialization of the methods. In
fact, the constraints on allowed subclass and superclass relationships and the class precedence
list algorithm are designed to facilitate natural, totally ordered class inheritance chains for
any given class.

Because overlapping set combinations cannot be naturally totally ordered, some means of
determining how to order the invocation of applicable methods must be found. One approach
is to specify a means to totally order the classes including the set theoretic combinations—
perhaps by user intervention. Another approach is to use method combination types that do
not require a total order. A third is to specify that if there is no natural order, the behavior
of the combined method must be independent of any arbitrary order chosen.

A predication extension would allow an arbitrary predicate to determine the applicability
of a method. Although possible, this extension has the same issues of ordering as described
above for the set-theoretic combinations. Even worse, caching methods as described above
will not work, because an arbitrary predication (program) may have side effects, and even
for the same instance, a method may be applicable one time and not another. However,
it might be possible to partition the domain of the predicate such that the selected set is
covered by only a few classes, and to implement a caching and/or dispatch scheme wherein
only members of those classes fail to take advantage of the caching; members of the other
classes would operate at a speed unaffected by the existence of such a predicate test.

Declarative extensions to CLOS would take compile-time advantage of method decla-
rations for optimization. If there is a call to a generic function from within a particular
method, and if there is sufficient declarative information about the arguments to the generic
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function, the call to the generic function can be replaced by a direct call to the applicable
effective method. This is like Self method unrolling [7]. Another kind of declarative exten-
sion is similar to that done by Bennett [6] where a global declaration that no more methods
or classes will be defined can simplify global analysis. Such a global analysis can be used to
produce an optimized run-time support system for delivery of applications.

2.3 Factoring Descriptions

Reuse is a major theme in current programming system circles. We used the term fac-
tored description for any program piece that can be used in more than one context. The
simplest example of a factored description is a subroutine or function. A subroutine is an
abstraction based on a reusable code fragment. This fragment is reused by being called or
invoked dynamically from several different places. Abstraction is the process of identifying a
common pattern with systematic variations; an abstraction represents the common pattern
and provides a means for specifying which variation to use. For a subroutine, the means for
variation are the supplied argument(s).

Classes and generic operations are the focus of factored descriptions in object-oriented
languages. New classes can be defined in terms of previously defined classes, and the new
descriptions can modify and augment these definitions. CLOS supports simultaneous inher-
itance from a number of previously defined classes.

The behavior of a class is determined by the set of applicable methods for that class.
Behavior can either be inherited, overridden, or extended, and these qualities are indepen-
dently determined for each message or generic function. When a particular behavior for
a class is supplied by the superclasses of that class, we say that the behavior is inherited.
When a particular behavior for a class is defined on the class and no behavior from super-
classes is used in the definition of that particular behavior, we say that the existing behavior
is overridden. When a particular behavior for a class is a combination of behavior defined
specifically for the class and behavior inherited from superclasses, we say that the behavior is
extended. CLOS provides mechanisms for all three, allowing both run-time and compile-time
combinations.

2.3.1 Multiple Superclasses

Ideally, a description is factored into independent components, each of which is useful by
itself. If a new class definition must directly depend on at most one other class definition,
we say that the system uses single inheritance; if a new class can depend on more than one
class we say that the language supports multiple inheritance. In single inheritance, direct
combination of several classes is not possible: extension is possible only by subclassing. To
combine behaviors from several classes, compound objects are typically created by storing
instances of various classes into the components of a single object. This technique requires a
visible layer of structure to be interposed between the client program and the components.
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Multiple inheritance is a more direct solution to this problem of combining structural
and behavioral features of previously defined classes. For example, suppose a class C is
a compound derived from several other classes. If these other classes are in independent
domains—share no names for commensurate attributes, either accidentally or deliberately—
the resulting compound class has the union of all the components of each of the base classes.
But if these classes are not independent, a means of handling conflicts is required. There
are four approaches for addressing name conflicts: disallow them, select among them, form
a disjoint union, or form a composite union.

The approach of disallowing conflicts is to signal an error if a name conflict occurs between
commensurate attributes.

The approach of selecting among conflicts can be handled two ways. One is to require
the inheriting class to specify an explicit choice. The second is to use encapsulation: The
classes that are inherited from can include declarations that specify that certain attributes
remain hidden even from subclasses. These two along with signaling an error are often used
in concert, as in C++.

The approach of forming a disjoint union is to create a separate attribute for each same-
named attribute. Attributes in the composite class will have to be disambiguated by some
additional means beyond the normal names, perhaps by using an extended name that speci-
fies the class contributing the attribute, either by fully naming that class with the extended
name or by indicating the inheritance chain from which the desired attribute is inherited.

The approach of forming a composite union is to create a single attribute for each same-
named attribute, by algorithmically resolving name clashes. The resolution algorithm must
be designed to reflect the essential characteristics of the inheritance graph topology, and the
features of the ancestor classes.

Smalltalk, which supports only single inheritance, signals an error if the same named
instance variable is specified in a subclass.

With disjoint unions, there are as many copies of the conflicting item as there are super-
classes with an item by that name. C++ uses this mechanism for member data elements.
Only some of the named elements are visible in the C++ derived class, because C+-+ sup-
ports name encapsulation between subclasses and superclasses.

CLOS creates a single composite description for a slot from all the inherited slots of
the same name. For some facets of slots, the resolution algorithm simply chooses the one
definition directly found in the most specific superclass bearing such a slot; for other facets,
it involves a union of all the inherited definitions; and ultimately, the resolution step is
open to end-user tailoring. The inheritance of methods and the ordering of methods in a
combined method also depend on the specificity of the classes involved. For this reason,
CLOS defines an algorithm which constructs sets of linearizations on the inheritance graph,
where each class has its own total precedence order—a unique linearization for each node in
the inheritance hierarchy [10].
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2.3.2 Inheriting, Overriding, and Enhancing Behavior

In CLOS, a method is applicable to a set of arguments if the actual arguments passed to
the associated generic function are instances, direct or otherwise, of the classes specified for
the parameters of that method. We use the term “direct instance” to refer to an instance
of a class that is not an instance of any subclass of that class. We use the term “indirect
instance” to refer to an instance of a class that is also an instance of some subclass of that
class. We use this terminology because there appears to be no agreement about whether the
term “instance” means “direct instance” or “instance, direct or indirect.”

The meaning of being applicable to arguments can be seen in this example: the following
method is applicable to the arguments <3, ABC> because 3 is an integer and ABC is a symbol:

(defmethod f ((i integer) (name symbol)) ...)

But the following method is not applicable because 3 is not a float:
(defmethod f ((i float) (name symbol)) ...)

The behavior of an object signifies the set of methods that are applicable to the object, for
all generic functions, even when that object is only one of several arguments that participate
in method selection. Method inheritance is also defined in terms of method applicability. For
CLOS and Smalltalk, all methods defined in a class are applicable to subclasses. For C++,
functions specific to a class are only applicable to a subclass if they are declared virtual.
Also, even virtuals are not seen if those methods of a base class are declared private. C++
thus provides much more control on the inheritance of behavior to derived (sub)classes.

There are two problems with enhancing behavior—contextual reference to behavior and
guaranteeing behavioral congruence. When behavior is extended, there must be a way to
refer to the existing behavior, to invoke it at a reasonable point in the new behavior, and
to guarantee that the overall semantics of the operation are preserved. For example, when
+ is defined on a class, it is reasonable to expect that the method implements something
recognizable as, and congruent to, addition. Note that behavioral congruence is a problem
with overriding as well.

There is no way to guarantee semantic congruence, but contextual reference to behavior
can be handled. Reference may be made to the same operation as defined on subclasses
(such as by invoking inner in Beta [19]), or to the same operation as defined on superclasses
(such as by sending the message to the pseudo-variable super in Smalltalk). In C++, an
inherited virtual can be invoked by calling it with a name qualified by the name of a base
class through which it is inherited. In CLOS, invoking an operation inherited from one of
the superclasses is normally done by using the special operator call-next-method, although
method combination techniques extend this capability.
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2.3.3 Method Combination by Roles

In CLOS, a method can be composed from subpieces that are designated as playing different
roles in the operation through a technique known as declarative method combination. None of
C++, Smalltalk, or Beta provide such declarative methods for combining method fragments.
The enhancement techniques of Beta, C++4, and Smalltalk are simple cases of procedural
method combination as described earlier in the section on enhancing method behavior.

To understand the power of declarative combination, consider the following program that
supports a fine-grained stream-opening protocol. It does this by calling a set of explicitly
named generic functions whose appropriate methods will be provided by more specialized
subclasses.

(defclass base-stream ...)

(defmethod open ((s base-stream))
(pre-open s)
(basic-open s)
(post-open s))

(defmethod pre-open ((s base-stream)) nil)

(defmethod basic-open ((s base-stream)) (os-open ...))
(defmethod post-open ((s base-stream)) nil)

(defclass abstract-buffer ...)

(defmethod pre-open ((x abstract-buffer))
(unless (empty-buffer-p x) (clear-buffer x)))

(defmethod post-open ((x abstract-buffer))
(fill-buffer (buffer x) x))

(defclass buffered-stream (base-stream abstract-buffer) ...)

Notice that the method for open defined on base-stream provides a template for the opera-
tions on streams. The auxiliary methods pre-open and post-open defined on definitions on
base-stream do nothing. They are only defined here to avoid calls to undefined methods.
Declarative method combination is an abstraction that makes it possible to supports
patterns of method calls like this without the user having to build in these calls to auxiliary
operations. In this example code there are four methods—open, pre-open, basic-open, and
post-open. The main sub-operation, basic-open, cannot be named open, since that name
refers to the whole combined operation. The other two names—pre-open and post-open—
are placeholders for actions before and after the main one, i.e., those preparatory steps taken
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before the main part can be executed, and those subsequent clean-up actions performed
afterwards. There really is just one action—opening—and all other actions are auxiliary to
it: they play particular roles. This constellation of actions should have just one name, and
the auxiliary names need only distinguish their roles.

In declarative method combination, there are role markers that act like an orthogonal
naming dimension. When a generic function is invoked, all applicable methods are gathered
into roles; and then within roles, the methods are sorted according to class specificity. An
effective method is then automatically constructed and executed, wherein each method plays
its role.

Because some method combinations are so common, they are given names and definitions
in CLOS. The most commonly used one is called standard method combination, which defines
four method roles: primary methods for the main action, :before methods that are executed
before the main action, :after methods that act after the main action, and : around methods
that precede all other actions, and which optionally can invoke (via call-next-method) the
sorted cluster of :before, :after, and primary methods.

The above example could be coded in CLOS as follows:

(defclass base-stream ...)
(defmethod open ((s base-stream)) (os-open ...))
(defclass abstract-buffer ...)

(defmethod open :before ((x abstract-buffer))
(unless (empty-buffer-p x) (clear-buffer x)))

(defmethod open :after ((x abstract-buffer))
(fill-buffer (buffer x) x))

(defclass buffered-stream (base-stream abstract-buffer) ...)

An important point to notice about this example is that the several methods of differing
roles did not all come from the same superclass chains. The primary method is defined
on base-stream and the auxiliary methods are defined on abstract-buffer. Buffers and
streams are independent, and when they are brought together to form the compound object
buffered-stream, the independent methods are brought together to define a compound
method. Although this example does not show it, the :before and :after methods are
often inherited from different classes at different levels in the class hierarchy. It is also
important to note that use of declarative method combination also entails that :before and
:after methods are inherited without the client having to be aware of inherited methods
that should be used.

A mixin is a class designed to be used additively, not independently. Mixins provide
auxiliary structure and behavior. The auxiliary behavior can be in the form of auxiliary
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methods that are combined with the primary methods of the dominant class, or it can be in
the form of new primary methods. The class named abstract-class above is a mixin.

The essential use of multiple inheritance is to provide reusable components; such compo-
nents are combined to define new classes. The best use of multiple inheritance is to define
pieces of structure and associated behavior that can be mixed in with other mainline classes
to form subclasses that differ from their superclasses by the addition of auxiliary structure
and behavior.

The stereotypical way that mixins are used extends beyond the composition of structure
to the composition of auxiliary pieces of behavior. Patterns of behavior can be captured in
code fragments such as shown in the definition of open above. Whenever we see patterns
of use we define an abstraction to capture it (built-in method combination); and when we
see the possibility that the user will also find patterns he wishes to capture, we define a
user-accessible abstraction mechanism (define-method-combination). With the metaob-
ject protocol, we extend this abstraction ability to programs, which can define method
combination types and use them.

2.3.4 Extensions

CLOS mechanisms for factoring are a codification and simplification of a number of features
that have been in long term use in Lisp-based object-oriented programming systems. For
example, both Flavors and Loops supported multiple inheritance. Loops used the equivalent
of call-next-method, and Flavors supported declarative method combination.

CLOS has no linguistic support for putting constraints on uses of classes defined as
mixins, as was available in Flavors[26]. For example, it provided language support to specify
that certain mixins were used with descendants of specified base classes, or with classes that
support specified operations. The metaobject protocol can be used to simplify adding such
a capability to a CLOS implementation.

CLOS has no mechanism for supporting encapsulation of names used in classes, except
for the package system (package encapsulation does not affect inheritance, only visibility).
For example, all slots named in a superclass will be found in a subclass, and if a subclass has
a slot specified with the same name as one found in a superclass (even accidentally), only
one such slot will exist in the subclass. For example, suppose one had the following classes
defined in two different applications:

(defclass location ()
((location-x :accessor location-x)
(location-y :accessor location-y)))

(defclass cad-element (location) ; location on chip

o)

(defclass display-element (location) ; location on screen

.
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If a user now wanted to build a displayable-cad-element by inheriting from
cad-element and display-element, an unintended conflict would occur. Such a conflict
would not occur in C++ where two different copies of location-x and location-y would
be created in such a subclass. Suppose each of cad-element and display-element had
defined a slot label with the intended meaning that it was the string that labeled that
element. These two should be merged. In C++, in the subclass of each of these classes, two
of these slots would also appear.

No single default always works. Sometimes it is more appropriate to use composite
objects rather than inheritance to achieve mixed behaviors; Stefik and Bobrow [25] discuss
the tradeoffs among various techniques.

Common Lisp provides a mechanism that can hide the visibility of names—this mecha-
nism is the package system. Some have suggested this as a mechanism for controlling these
name conflicts. In the above example, the classes cad-element and display-element could
be placed in separate packages, and the only symbols to be exported correspond to the pub-
lic interfaces to those classes. The slot names would remain internal to the packages and
therefore there would be no conflict between the two slots with apparently similar names
located in different packages. In this case it does not have the desired effect because the
name location-x is inherited twice from the same place, and hence the symbol is in the
same package along each inheritance path.

The slot named 1abel illustrates the opposite problem. If one separated these classes into
different packages, two different slots each appearing to have the name label are created,
with these symbols from different packages. A special declaration would have to be used to
cause these two symbols to be identified. In general, packages are not a good solution to fine-
grained visibility-hiding. In the worst case this might require one package per class; since the
package system was designed as a module mechanism, not as a fine-grained encapsulation
mechanism, use of a great many packages might lead to performance problems. In [18], code
is shown for an extension to CLOS that would support appropriate encapsulated inheritance
without use of packages.

A more radical extension would be a mechanism for disjoint multiple inheritance. One
such mechanism, called hybrid inheritance, defines the notion of domain [12]. In this exten-
sion classes in separate domains are guaranteed to be independent, and rather than creating a
class that represents combined classes, instances are created from classes in several domains:
Such instances can be viewed as an instance of each class of which it is composed. For this
extension the function class-of must be extended to take an optional second argument,
the domain, and it returns the class of which it is an instance in that domain. Reference to
inherited components is within domains. Method combinations within each domain operate
independently. In fact, inheritance rules are local to each domain, so that each domain could
have its own notion of object orientation.

The use of domains can be viewed by programmers as either providing a different model
of multiple inheritance or providing multiple views of the same object. In the first case,
there is a way to combine behavior provided by the different domains, which is a form of
cross-domain method combination. In the second case the behavior is relatively independent,
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and so there is a way to select the behavior provided by different domains.

In the above example of buffered streams, there would be no class representing buffered
streams, but there would be instances that were instances both of buffer and of stream.
The advantage of this approach is that it captures the essence of the disjoint union approach
to combination while retaining the composition approach when constructing a combined
class.

Another category of extension is enhancement of mechanisms for method combination.
For example, a dynamic interpreter could be defined to interpret the roles of methods.
Such an interpreter could be used to provide a backtracking mechanism that would search
for methods that achieved certain goals. That is, the method combination mechanism is
generalized beyond merely capturing patterns of use in the form of static roles to capturing
more dynamically determined roles.

2.4 Reflection

Reflection is the ability of a program to manipulate as data something representing the
state of the program during its own execution. There are two aspects of such manipulation:
introspection and intercession. Introspection is the ability for a program to observe and
therefore reason about its own state. Intercession is the ability for a program to modify
its own execution state or alter its own interpretation or meaning. Both aspects require
a mechanism for encoding execution state as data; providing such an encoding is called
reification. The parts of the language that support these capabilities are referred to as the
introspective and intercessory protocols.

There are four dimensions on which to explore reflection: structure, program, process,
and development. Structure refers to the way that programs are put together. In an object-
oriented setting, structure is reflected in the class hierarchy and the methods associated with
each class. Program refers to the way the structure of the code effects behavior. This includes
notions of qualified methods and their interaction with declarative method combination.
Process refers to the way structure and program are interpreted to produce running systems.
Development refers to how such reification supports incremental change and development of
programs.

Within each dimension there are three points: implicit, introspective, and intercessory.
When a quality is implicit, it is present in source code but is not represented as data in
the language. When a quality is introspective, it is a first-class object that can be analyzed
by a program. When a quality is intercessory, its representation can be altered, causing its
behavior to change.

In some languages, such as C++, structure is only implicit in the source code. In these
languages, source code is available for compilers and environments to examine, but typi-
cally the compiler and the environment are separate, external. In other languages, such
as Smalltalk, CLOS, and LOOPS [1], the class hierarchy can be altered and dynamically
extended by the running program.
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With respect to the program dimension, language systems can be implicit, introspective,
or intercessory. Implicit languages simply provide syntax and semantics for programs, and
the compiler (or interpreter) and linker effect the semantics. Introspective languages provide
a first-class representation for programs, and frequently they provide an operation that can
convert data to program, such as COERCE in Common Lisp that converts a lambda expression
to a Lisp function. Languages with intercessory capabilities have a procedurally reflective
interpreter. When this interpreter is written in the same language it interprets, it is often
called a metacircular interpreter. Altering or customizing parts of that interpreter can be
done by writing programs in that language; this can change the semantics of some programs.

Lisp has traditionally supplied a means for programs to introspect, and to effect their
own states, albeit sometimes in a limited sense. Lisp programs are encoded as symbolic
expressions—the original base of data types for Lisp—so a program can construct other
programs and execute them. A program can observe its own representation, and (heavens!)
modify it on the fly.

Object-oriented programming offers an opportunity to migrate these notions from ad
hoc mechanisms (e.g., “hooks” added to EVAL) to more principled ones. The first step
in this direction is to require that classes be first-class—that each class be represented by
a data object that can be passed as an argument to functions, held in program variables,
and incorporated into data structures such as lists and the like. This is true for CLOS and
Smalltalk, but not for C++4-. The second step is to require that each Lisp object be a direct
instance of some unique class. Thus, each class itself is an instance of a class. Classes whose
direct instances are themselves classes are sometimes called metaclasses.

In CLOS, generic functions and methods are also first-class—and hence are also in-
stances of classes. The classes of generic functions, methods, and method combinations
describe, at least to some extent, their structure and behavior. For example, there is
the class standard-generic-function, whose instances are the CLOS generic functions;
#’print-object is an instance of this class. These classes and objects are referred to as
metaobjects. These metaobjects form a network that support introspection into the workings
of CLOS. Note that the metaobject standard-generic-function and #’print-object are
at two different metalevels. The latter is an object that reifies a specific function object, and
the former is a class object that describes many metaobjects.

Object-oriented languages support incrementally extendible or specializable systems. The
CLOS interpreter is an object-oriented program. Hence it supports extendibility. These
extension capabilities are known collectively as the CLOS metaobject protocol. CLOS also
supports dynamic changes of CLOS objects, such as dynamic redefinition of classes (without
recompilation), and programmatic change of the class of existing objects while preserving
their identity. The latter facilities are part of a software development protocol.

2.4.1 Metaobject Protocol

In CLOS, the details of facilities such as inheritance, method combination, generic function
application, slot access, instance creation, and instance initialization are implemented as
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if by a CLOS program whose structure and behavior can be observed (introspection) and
affected (intercession).

By creating subclasses of specified metaobject classes and adding methods to generic
functions specified in the metaobject protocol, standard behavior can be customized to a
great degree. A particularly common customization of classes is to change how some local
slots are to be stored—say, persistently in a database server rather than in computer memory.
To implement persistent slots, a method applicable to instances of a user-defined subclass
of standard-class overrides the standard method for slot-value-using-class, which is
the metaobject generic function that determines how slot storage is stored into and retrieved
from in memory, or wherever[22].

The exact mechanisms for metaobject programming are not part of the proposals for
ANSI CLOS; but an informal, de facto standard is emerging out of the standardization
process[18], supported in large part by the various commercial CLOS implementations.

A key aspect of intercession is that reflective capability not impose an excessive perfor-
mance burden simply to provide for the possibility of intercession. What is not used should
not affect the cost of what is used; and common cases should retain the possibility of being
optimized. Even while supporting the development features described in the next section,
several commercial CLOS implementations have very good performance.

2.4.2 Software Development

Different languages provide a variety of tools situated along a spectrum for aiding software
development. At one end of the spectrum are languages like C++ in which the only tools are
external development environments. In the middle are languages like Smalltalk that provide
residential development environments that have access to every part of the language and its
implementation, including, in some cases, its source code. At the other end of the spectrum
are languages like CLOS that provide linguistic mechanisms to support development. The
underlying nature of this spectrum is the degree to which the language provides mechanisms
for introspection and intercession by the environment.

External development environments are not necessarily limited in power, but can provide
incremental development and debugging capabilities similar in power to residential environ-
ments [11]. Residential development environments add to this the ability to use as libraries
parts of the language and environment implementation.

Linguistic support for development can help with both incremental development and
with delivery of applications. For example, CLOS supports a class redefinition protocol, a
change-class protocol, and a mechanism to dump instances to a file and retrieve them. In
addition, the metaobject protocol can be used to direct the analysis of application code, to
provide flexibility during development, and to help achieve efficiency for delivery when that
flexibility is no longer necessary. [6]

Software development environments can help solve linguistic problems. In CLOS a
method may have several specialized arguments, and hence mention several different classes.
Clearly, the definition of the method cannot be defined textually near each of those classes.
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Furthermore, the methods of a generic function may be distributed over several different
files, based on modularity issues arising out of the end application; hence one could not
expect them all to be defined in a textually compact region. Environmental tools can be
used to present related classes, methods, and generic functions in textually meaningful and
compact ways, and made accessible from multiple points of view (e.g. methods as part of a
generic function, or associated with a class).

2.4.3 Extensions

Lisp environments have traditionally been far in advance of environments for other languages.
Editors, debuggers, compilers, trace facilities, and dynamic loaders are frequently part of
a Lisp environment. Providing reflective capabilities for these components is a possible
extension.

The flip side of reflection is encapsulation. As important as the ability to openly examine
and modify a portion of a system is the ability to close the system once modified. Again,
encapsulation is a useful extension in this context.

Some Lisp implementations provide a multitasking facility; others provide genuine paral-
lelism. A possible extension to standard CLOS is to add a reflective layer on processes. For
example, processes could be categorized into classes. Sets of processes could be treated as an
object that can be manipulated. Subsets of these processes could be distinguished by their
classes, and control code can be written whose behavior depends on the state of the set of
processes or the states of any of the processes. When certain important states are achieved
or events occur within the environment, specific generic functions could be automatically
invoked by the system, and these generic functions may be specialized. For example, when
a process terminates normally, the generic function terminate, which can be specialized,
could be invoked by the system. [12] Facilities like this have been added to some Lisps, but
not in a reflective style where the important parts of the state are reflected in metaobject
classes, and where behavior can be specialized in an object oriented style.

There are two natural types of reflection, depending on the model of object orientation:
operator-based reflection and object-based reflection. Operator-based reflection provides a
mechanism to trap—perform user-specified reflection—whenever a particular operation is
invoked, regardless of the objects on which it is invoked. Object-based reflection provides
a mechanism to trap whenever any message is sent to a particular object, regardless of the
operation. This duality seems to be inherent in the focus of the two systems.

Currently, reflection in CLOS is via generic functions, which can only be defined for me-
thodical types. This is operator-based reflection. The mechanism for such reflection is the
method selection and effective method construction machinery, which is defined on classes
of generic functions and which are subject to end-user enhancement by using the metaob-
ject protocol. Each generic function in such a class enables the reflective step at function
invocation time (possibly doing nothing more than the normal, unreflective operations), be-
cause this is where the match up of arguments to the effective method occurs. In contrast,
classical message-passing systems could easily be extended to provide object-based reflection
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by having the message passing mechanism itself trap out on any object that is particularly
marked for reflection; but they cannot as easily enable operation-invoked reflection as with
generic functions in CLOS.

Another extension is garbage-collector-based finalization, which is a means to specify
cleanup action that will be performed on an object when the last user reference to that object
disappears. Finalization is often used to release storage and other resources that are tied to
an object through means other than normal Lisp pointers. For example, finalization can be
used to release an operating-system lock on a file when user code can no longer access the file
handle; or finalization can be used to free up remote bitmap storage when a program drops all
references to a network-based window. Most implementations of Lisp already support some
internal, ad hoc notions of finalization for just these purposes—file-system and X-windows
interfaces—but a few are beginning to support an end-user version of finalization by providing
a protocol to register individual objects for final cleanup. The CLOS initialization and
metaobject protocols make it possible to create classes whose instances would be subject to
a particular finalization method, thus forming a dual to the initialize-instance protocol.
By adding it at the reflective level, this would support object-oriented extensions of system-
provided facilities.

2.5 Conclusions

We have seen how the confluence of several programming language themes have been realized
in CLOS. We have attempted to place these ideas in the context of other similar ideas in
other programming languages. We have also explored how the metaobject protocol might
be used to adapt some additional features not in the kernel. Finally, we have looked at how
a closer tie can be made between static program structure and the program development
process in CLOS using the reflective capabilities of the language.
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