Used Software
by
R. P. Gabriel

Lucid, Inc.

1. A Story

The student looked out the window and wondered how to speed up his program. He

had written a toy Lisp system and its compiler, and he had to speed it up.

His code was simple,

(defun fib (n)
(if (< n 2)
n
(+ (fib (- n 1)) (fib (- n 2)))))

but all his tricks failed—tail-recursion removal, specially tailored function-call, passing

everything in the registers; it was too slow.

He looked out his window and wondered and saw the snow falling in the purple light

and his thoughts settled to the ground.

2. Caching

What the student failed to notice was that he was recomputing many values of the
FIB function over and over. Unaware that his intermediate results could be saved, he thus

did not see the better algorithm for Fibonacci:

(defun fib (n)
(if (< n 2)
n
(do ((p 0)
(c D
(12 (1+ 1))
((<n i) ©)
(setq p (progl c (incf c p)))))))

Although this code may look difficult, it runs much faster than the student’s version.
The key is that for 2 < n, the value of fib(n) is cached in C and the value of fib(n — 1)
is cached in P. The computation of fib(m) for 2 < m is iterative, using the two cached

previous values to compute the next value.

This function could also be written in this way:



§2 Caching

(defun fib (n)
(labels ((inner-fib (p c i)
(if (< n 1)
c
(inner-fib ¢ (+ p ¢) (1+ i)))))
(if (< n 2) n (inner-fib 0 1 2))))

‘Caching’ is used to save previously computed values of functions that might be of
interest. Caching is a general technique that enables a programmer to greatly improve the
running speed of programs by only computing a frequently used or expensive-to-compute
value once. Looking up the stored value in a table is rarely very expensive and is often no

more expensive than a hash table lookup.

On many high-performance computers, and even on some medium-performance com-
puters, caching is used to speed up general memory operations. Even paging is a form of
caching technique—the disk is regarded as the large main memory, and high-speed memory

(RAM) is used to cache the most recently addressed portions of the memory.

In a large, dynamically retargettable Common Lisp compiler, caching is used in half a
dozen different places, yielding a total speedup of a factor of 3 or 4 in compiler performance.
That is, by adding caches in these places, the speed of the compiler when compiling code
improves by up to a factor of 4. In general, the local improvements from caching at the

low level are about a factor of 10 over the uncached methods.

The technique of caching can be summarized by the slogan “If you’ve done it before,

don’t do it again.”

3. The Act of Programming

The act of programming is to take a specification of a task, even a loosely stated
specification, and turn it into a program text that, when compiled and executed, performs
the specified task.

Expertise in the art of programming is in some sense a cumulative skill. People
who program at the expert level have stored away a number of programming cliches, so
that large parts of the programming task for them involve nothing more than recalling
the appropriate cliche and applying it to the current task. For example, a program-
mer who has produced many implementations of queue management will find each new
queue-management-like program simple to write. Such a task might stymie the novice

programmer.



§3 The Act of Programming

In the more than 25 years that people have been programming computers, many
programs have been written. Each can be thought of as a programming cliche and thus if
the caching slogan introduced above is followed, we should not write a program if someone
has already written a program similar to the one we need. Software that is used in this

fashion might be termed “used software.”

If I sit down at a terminal to edit a file, I don’t write an editor first—I simply use the
editor on the computer. This is a program that already exists, and there is no need for
me to write it again. If I sit down at a terminal and want to run Lisp, I don’t write a Lisp
system first—I simply use the one that is already on the computer. However, if I want to
run the Lisp system while I am in the editor, using the editor as an input stream to the

Lisp, I will probably have to write some code that will enable me to do that.

4. The Perfect World

The ideal towards which we should strive as computer scientists is one in which all
pieces of previously written software can be easily re-used. Programmers ought to be able
to take two programs and build a third that is the result of combining the two existing
programs; if they wish, they also ought to be able to impose some control structure on top

of the two programs, perhaps as a feedback loop.

For example, suppose that one of the two programs is a simple spreadsheet that
takes data from a data base and that the second is a program that performs a factory-
floor simulation. The spreadsheet program reads a model from disk and determines the
profit-and-loss situation for a small manufacturing company. The goal is to produce a
program that enables a production-line manager to reconfigure his assembly line in ways
that positively impact the company’s bottom line. There are are set of parameters that
can be varied, and the new program is to vary these parameters, watching the bottom line

and hill-climbing until the best payoff is achieved.

The two biggest pieces of the new program are already written. But to combine
them, the programmer must probably make the two programs interact through files—the
spreadsheet program with its model will read a file that is written by the factory-floor

simulator and write a file that the controlling program (the hill climber) will read, and so
forth.

If the operating system provides features for interprocess communications, the com-

munication between the two programs could be handled by using these features rather



8 4 The Perfect World

than by using files for communication. This method of combining programs is referred to

as ‘message-passing.’

In the algorithmic uses of caching, a program that requires previously computed values
might look up those values in a table rather than invoke the subroutines or functions that
compute them. As an analogy, when programmers are writing programs whose behavior is
like that of programs that have already been written, it is preferable to use those programs
again intact rather than write them from scratch. If previously written programs can be
used intact, the storehouse of existing programs can act as a cache of programs. But
unlike value-caching techniques, which are well known, program-caching techniques—how

to re-use old software—unfortunately are not well known.

5. Review of Currently Used Software Techniques

Building new programs out of existing programs is possible using known but rather
crude techniques. The thrust of new research is to expand these techniques, and new
operating systems and hardware will possibly be needed to achieve something close to the
ideal. Some modern programming systems do demonstrate the capability of incorporating
used software into new programs. This section is an overview of some of the existing

techniques.

In the best of cases, the programming cycle is approximately this: Define a formal
specification of the program, define the abstract data structures, define the control flow;
derive the program from the specification either by hand, by using semi-automatic tech-
niques, or by automatic techniques; compile the program into a running image; and use

the program as intended or let it fall into disuse and forget about it.

In the best of cases, all of the artifacts of each part of the cycle are preserved—the
specification, the derivation, the source code, and the object code must be saved. When
the old, used program is rediscovered, the task of re-using it is easier if all these artifacts

exist; the task is much harder if only the running image is available.

There are three basic techniques for creating a new program out of old code and some
new code: software engineering techniques, same address space techniques, and object-

oriented /message-passing techniques.



85 Review of Currently Used Software Techniques

5.1 Software Engineering Techniques

Software engineering techniques for the re-use of software center on structuring the
process of code creation so that the program can be re-used easily. Most of the techniques
available focus on the program text or on the derivation of the program text from a formal
specification. Source code which is poorly documented and old is nearly as hard to re-use

as executable files alone.

To be able to re-use software in a new application using software engineering tech-
niques, programmers must exercise some forethought. Programmers, however, generally do
not consider the possible recylcing of their code. Typically, programs are written to stand
alone, to exist as if no other program mattered. For example, programmers frequently use
global variable names which are not specific to the task and which can, therefore, clash
with variable names appropriate to some larger supertask, and programmers similarly often

choose subroutine names without regard for name conflicts.

If a program was written using modular programming in which the code is well speci-
fied, the interface is documented and well structured, the internals of the code are hidden
from view, and the source code is available and usable in the current context, that program
can simply be used as a building block in the new application or perhaps used much as a
subroutine is used in standard programming practice. That is, the source code for the old

program can simply be incorporated into the source code for the new program.

Many programming languages do not have features for abstraction and encapsulation
of programs (notable exceptions are ADA, Common Lisp, and Modula). Even if these tools
are available, programmers who are writing what they consider to be one-time programs

may not wish to make the effort to write their programs so that they can easily be re-used.

There are certain prerequisites for using the modular programming technique. The
original programming language must be compatible with the currently desired one; the
original formulation of the modules should be suitable; and the compiler for the original

programming language must still produce correct code for the program.

If the original code was written automatically or semi-automatically from a formal
specification—that is, if the derivation of the program from a formal specification was kept
and was usable, the new program can be derived from the union of the old specification
and derivation along with the new specification. According to the inferential programming
methodology discussed by Scherlis and Scott [Scherlis 1983], all programs should be saved

with their derivations for just such a contingency.



85 Review of Currently Used Software Techniques

This is an ideal methodology because the re-use of the program (source code or source
code plus derivation) in some larger context can lead to optimizations to the original

program, perhaps resulting in a faster, smaller specialization of the original program.

For example, suppose that the existing program is a text editor, suitable for editing
large files, preparing lengthy documents, and writing code in several programming lan-
guages. This program is probably quite large and convoluted. Suppose further that the
new use is as a line editor in a particular application. The new program will occasionally
stop and ask the user a question, which is to be answered by providing a line of text. The
applications programmer wants the user to be able to edit his text by using the text editor,

rather than by rubbing out previous text and retyping when an error is discovered.

In the obvious uses of this new program, the file-reading, document-preparing, and
program-code-creating aspects of the text editor are not needed; this implies that most of
the old code is not needed. But if the user of the new program is somewhat sophisticated,
the ability to examine files, to extract pieces of the response text from files, and to compose
text for input to the program would be useful and important features. If this were the

case, the entire text editor might be required.

5.2 Same Programming Language

Using existing software in source-code form works best when the currently desired
programming language and the original programming language are the same and when the
compilers are also the same. The only question then is how to link the various parts of the
programs. Several possible problems can occur. The names of functions or subroutines
may conflict, the names of global variables may conflict, or the data structures may be

incompatible or not used abstractly.

The data structures in both the old code and the new code ought to be used in abstract
form in the sense that the underlying implementation of the data structures should not
be exposed to the program. For example, if some object is being represented as a vector,
the creation of the object, its access, and its modification should all be named with terms

appropriate to the object represented and not with terms appropriate to vectors.

Here the typical programming scenario gets in the way. Because programs are infre-
quently written with re-use in mind, the task of re-coding an existing program for re-use
may exceed in difficulty the task of rewriting the existing program unless a carefully written

specification is in hand.



85 Review of Currently Used Software Techniques

5.3 Programming Systems with Packages

A powerful technique for re-using code is to encapsulate it into a larger piece of code
in such a way that the implementation technology for the old code is hidden and only a

narrow, precisely defined interface to it is presented.

Some programming systems have ‘modules’ or ‘packages.” These program-construction
constructs enable programmers to write code in such a way that only the external interfaces
to their software are visible to other parts of the system. The internal global variables, the
procedure names, and the implementation of data structures are hidden. The purpose of
these constructs is to reduce the number of possible conflicts between parts of the program

written at different times and by different people.

In programming systems that have modules or packages, mixing old existing code with
new code is easier than in systems without them. In Common Lisp, for example, old code
can be placed in a separate package, which keeps name conflicts from occurring. By using
packages with the correct interface code exported to the package with the new code, the

problems of mixing old code with new code are minimized.

The advantage of this is that the existing program can be retroactively placed in a
separate package, and the interface routines can be exported with the new code, perhaps
with a renaming for compatability. By knowing which parts of the code must be exported,
the programmer can still use the code effectively even if the original author is not available.

This is a tolerable, although not ideal, situation.

5.4 Translating Programs

The programming language used by an original author is often not appropriate for a
contemplated application. If this is the case, the pleasant situation of working in the same

programming language can be attained by translation.

Translation can be done by hand or by machine. Translation by hand is tedious and
error-prone. If the original programmer’s style is unlike the current programmer’s, the

task of translating can be maddening.

Translation by machine has only recently become feasible. Several commercial con-
cerns now provide the service between selected programming languages. Translation is
like compilation, but while a compiler translates from a high-level to a low-level language,
eliminating unnecessary steps along the way, a translator translates a high-level-language

(usually) to another high-level one, perhaps with the problem that there is a near-match



85 Review of Currently Used Software Techniques

between the constructs in the two languages, but the details of the match are difficult to

express.

For instance, suppose that the original language has an iteration construct that is
inherently parallel—binding forms do not interact—and the new language has an iteration
construct that is sequential. The translated use of the iteration will be ugly, perhaps
introducing new variables and using side-effects. If the new program is to be maintained

by hand or to be altered, the result could be exasperating.

When the translated-from language is a much lower-level one than the translated-
to language, the translation is much more difficult. Imagine a large assembly language
program in which clever use of registers is made. How could this be easily translated

except by mimicry of the original target computer in software?

Translation only allows us to use the same programming language. Without a known
specification, the known problems of re-using the code in the context of the new program

remain.

5.5 Object-Oriented Programming

Object-oriented programming, in its purest form, would be an excellent solution to
the used software problem if it were uniformly used and extended to programs as a whole.
Object-oriented programming is a technique and a set of programming constructs that
enable a programmer to create objects whose behavior is inherited and whose behavior is

invoked, usually by message-passing.

Here is a simple example of the inheritance of behavior. Suppose we are writing a
program about automobiles operating in various situations. We define a category of thing
called an ‘automobile.” This category is represented by a data structure whose contents
reflect the parts of an automobile of interest. As terminology, we refer to the parts of this

data structure as ‘slots’ and to the contents of the slots as ‘slot-values.’

A program can create an instance of an automobile in a stylized manner. The parts
of the automobile not specifically assigned by the instance are inherited from the general
category. The slots can contain procedures as slot-values. Procedures can be written whose

major activity is to invoke other procedures found in slots.

An important use of inheritance occurs in systems that allow multiple inheritance.
Suppose that we have an application in which there are automobiles and tanks and that

the program we want to write requires the representation of an automobile used as a tank



85 Review of Currently Used Software Techniques

in a war situation. Inventing a new category of object called ‘automobile-used-as-tank’ is
one way to accomplish this. Another way is to create an instance of both the ‘automobile’

category and the ‘tank’ category. This new instance inherits from both of these categories.

A procedure that responds to messages sent to it is one type of procedure that can be
invoked on an instance. An object can be sent a message whose contents is a representation
of a request for the object to print itself, and the result of sending the message is that the

object is printed on some device.

The important point about this is that the programmer does not need to know how
to print the object, nor does he need to know the name of the function that will print the
object. However, he does need to know the form of the message that will cause the object

to print itself.

How to know the forms of messages is a problem whose solution lies in one of two
directions. A common language for messages of general use could be created, and any
object-oriented system would use this store of messages. The second solution would be to

use a variant of message-passing called ‘generic’ functions.

A generic function is one in which the actual procedure executed depends on the
types of objects passed as arguments to it. In the print case, a generic function called
‘print’ would be defined to print the data structures normally available in the programming
language. When the automobile category is defined, an addendum to the definition of
‘print’ would be made that stated that if the object to be printed is in the category called

‘automobile,” some other specified procedure is to be invoked instead of the usual one.

The definition of ‘print’ can thus be embellished to any degree necessary. And the
problem of a standard set of messages is replaced by the problem of a standard set of

procedures.

One method for re-using software with minimal rewriting is to treat entire programs
as objects; the method of communicating data between programs could be accomplished
by message-passing, using an object-oriented programming approach. Remember, we are
talking about programs as object code with possibly no existing source code as the ideal
definition of a program. Because running programs exist within an operating system, the
object-oriented programming constructs needed for the used software problem would have

to exist within the operating system.



85 Review of Currently Used Software Techniques

Currently, object-oriented programming exists as a technique and as a set of pro-
gramming constructs within a programming language. Most operating systems have only
limited versions of this sort of functionality. The two notable exceptions are the Lisp
machine operating system, which is simply an extension to Lisp (actually a programming
language along with the operating system) and the UNIX operating system, which provides

facilities for ‘patching’ programs together.

5.6 Lisp Machines

‘Lisp machine,” as used here, refers to a computer whose only programming language
is Lisp and whose operating system is an extension of Lisp. Lisp is a programming system,
which includes the Lisp programming language plus a large number of utilities. As such,

it is easily extendable to an operating system.

If there were only Lisp machines, the problems of used software would be much easier
to contend with because the goal of combining a common programming language and a

powerful package system to separate programs could be achieved.

Of course there is nothing special about Lisp in this regard. It simply happens to be
one of the languages that has been most developed and designed with this goal in mind.
Other programming languages are suitable for having a ‘machine’ around them; Ada is
a good example. Insisting on Lisp or on any single programming language is unrealistic.
People have programmed in a variety of programming languages, and they will continue

to do so.

5.7 UNIX

UNIX, despite its drawbacks, has one feature that is of great use in the quest for a

means of re-using software—pipes.

Programs generally communicate with people by typing on the screen. Character out-
put is channelled through a single mechanism, a mechanism much like a stream. Similarly,
many programs accept input that the user types in. This input is also handled through a
mechanism that is like a stream. A pipe is a means of connecting two programs to each
other by connecting the output channel of one to the input channel of the other. Instead
of typing out to the screen, the first program sends its character output directly to the
input channel of the second program, which was written to expect characters typed in at

a terminal.



85 Review of Currently Used Software Techniques

Programs not specifically written to communicate can thus communicate easily. The
communication language is a standard one—ASCII text. Other programs in other operat-
ing systems can be made to mimic pipes by communicating through files or through other

interprocess communication channels provided by the operating system.

6. Common Interprogram Language

The goal is to enable programs to be re-used without extensive reprogramming, trans-

lation, or human interaction with the innards of the old program.

One way to solve the used software problem is to define a common interprogram
communications language that can act as a protocol between programs. This interprogram
language would also serve as the usual means for the program to interact with the outside
world. That is, all terminal, keyboard, file, network, and mouse interactions would be

channelled through this mechanism.

For example, the programmer writing code that interacts with a graphics system
would invoke the interprogram language to get lines and characters (with fonts) onto the
screen. Ideally, the programmer would not know how any of the underlying objects were
represented. Furthermore, this mechanism could be object-oriented in its implementation,
and all slots external to the program as a whole could exist only in the interprogram
language part. The programmer would then be able to manipulate the program as a whole

by using only the hooks provided by the interprogram language.

The interprogram language would need to include abstractions for all of the inter-
change media available—characters, strings, lines, textures, bitmaps, mouse events, file
names, and many others. This language is not easy to define, and grafting programs
together might involve representation changes between programs. For example, if one
program is writing lines onto a screen to form closed polygons while a second program is
taking lines forming polygons and calculating areas, the first program will ‘think’ it is still
drawing lines on a screen, and the second program will ‘think’ it is receiving lines as pairs
of cartesian co-ordinates. This might require a representation change if the interprogram

language is not written at the right level of abstraction.

The notion of pipes can thus be extended to include interactions with graphical objects
on a bitmapped screen. In fact, all external behavior of the program could be used as its
‘exported’ behavior while its internal workings are kept a compiled secret. The benefits

of this approach extend beyond used software. For example, a program originally written



§ 6 Common Interprogram Language

for bitmap graphics could be run on a machine with display-list vector graphics, assuming

that the proper abstractions are implemented.

7. Object-oriented Operating Systems

To use the interprogram language, an operating system that provided a good pro-
gramming environment would be needed—an environment that, like the Lisp machine
environment, would provide a powerful vehicle for using existing software. Unlike the Lisp
machine environment, however, this environment would need both shared and unshared
address spaces. Many programs are written that assume that the entire address space is
available to them, and the other parts of the program, which are possibly other old pieces

of used software, need to be protected from such unruly programs.

This attractive scenario would certainly be an improvement over the current situation.
A programmer would only have to manipulate an existing program that interfaced with
the outside world through an explicitly managed set of channels, and the existing program
would look as if it were written in a modular fashion, ready for use. It would not need
to be re-compiled, translated, or manipulated in any way other than by representation

changes in the interface between programs.

But the scenario could be much better. Programs are written for very different pieces
of hardware. And even if all programs were written using the interprogram language, a
new program put together from a number of old programs compiled for different computers
would not be able to run on any single computer unless the source code was still available
and all the old programs could be re-compiled. How do you run an IBM 370 program on
an MC680207

8. Conclusions

The world of programming is in a medieval stage at present. Different programs are

castles in a feudal society of programs, with little communication between them.

We cannot solve all programming problems here but only touch upon some of the
directions that research in programming methodology might follow. The pie-in-the-sky
goal of taking any program written any time for any piece of hardware and using it to
build new programs with almost no programming changes to the original program is too
much, perhaps, to ask. However, with the speed of new computers, it may indeed be

possible to define virtual processors with acceptable performance.



89 Reference

9. Reference

[Scherlis 1983] Scherlis, W., Scott, D., First Steps Towards Inferential Programming,
IFIP Congress 83, North-Holland, 1983.



