
1

Design Beyond Human Abilities

Richard P. Gabriel

On November 16, 2007, I presented a talk on Design as my Wei Lun Public Lecture at the Chinese
University of Hong Kong. This is a revised and reimagined transcript of that talk.

h h h

This talk is an essay on design. In the 16th century, Michel de Montaigne invented a new genre of writing he
called an essai, which in modern French translates to attempt. Since then, the best essays have been explorations
by an author of a topic or question, perhaps or probably without a definitive conclusion. Certainly in a good es-
say there can be no theme or conclusion stated at the outset, repeated several times, and supported throughout,
because a true essay takes the reader on the journey of discovery that the author has or is experiencing.

This essay—on design—is based on my reflections on work I’ve done over the past 3 years. Some of that work
has been on looking at what constitutes an “ultra large scale software system” and some on researching how to
keep a software system operating in the face of internal and external errors and unexpected conditions.

In this presentation/essay I’ll look at the nature of design through the lenses these two inquiries provide.
Namely, what can we learn of design when we look at an extreme design situation, and when we look at how to
give a system the characteristic of homeostasis: the ability of a system to regulate its internal environment to

maintain a stable, constant condition. In short, the ex-
ploration is what we can learn about design when we ex-
amine design situations that are beyond (current) hu-
man abilities.

As many do, I begin this inquiry by looking at a dic-
tionary definition. Here is the definition of “design” from
the Second Edition of the Oxford English Dictionary. I
also looked at definitions provided by others. Here is the
definition Guy Steele used in his famous “Growing a Lan-
guage” talk at OOPSLA in 1999. (In this talk he illustrat-
ed his points by using only words of 1 syllable unless he
had already defined them using words he was permitted
to use at that point in his lecture.) The short definition
is one I’ve used in the past. I intended it to imply that a

2

design is not a particular artifact or act of producing one, but only whatever thinking one does in anticipation
of building—I wanted to include the activities of what were once called “hackers” or expert programmers who
seem to do little planning before they type in code; instead their designing is based either on a lot of experience
and skill, or on their ability to think quickly (and in silence) about the problem. Moreover, I wanted my defini-
tion to more clearly imply than others do that the thinking can be interwoven with building.

Carliss Baldwin and Kim Clark are in the Harvard Business School, and their definition is from work where
they were looking at how modularity of design can lead to new markets. In the case study that made them fa-
mous, they looked at how the PC industry was made possible by the modular hardware design that IBM pro-
duced in the early 1980s. This has led to research on how to place a monetary value on part of a design.

What these definitions have in common is their reference to ideas and a mental plan, hints at problems that

need to be solved, purposes, and planning before building.
Now let’s look at the first of these two extreme design situations: ultra large scale software systems. This ex-

ploration is based on work I did in conjunction with the Software Engineering Institute at Carnegie-Mellon Uni-
versity as part of a study commissioned for the US Army, which was interested in setting a research agenda that
would enable the creation of very, very large systems. The individual who sponsored the study—Claude Bolton—
believed that the software community is currently unable to build what he considers small or medium scale
software systems, and so he doubted that our abilities would automatically get better as the scale increased.
Therefore, he believed that we would need to create a research agenda that directly addressed the scale issues.
The SEI study looked at characteristics of ultra large scale systems (ULS systems), the challenges one would en-
counter when designing and constructing them, and the research needed to address those challenges. The re-
search agenda we produced would need about 25 years to reach maturity (http://www.sei.cmu.edu/uls/). In

3

the description of ULS systems, we talk about adversaries, which is intended to refer both to outside agents who
wish to hamper, harm, or disable a running system, as well as to environmental factors like faults or bugs, power
failures, hardware failures, climate and weather, etc. Note that in the commercial world, an adversary can be a
competitor, a virus writer, a spammer, a spoofer, or any other security risk.

In this presentation I talk about trillions of lines of code in order to emphasize a scale way beyond what we
think of as remotely feasible today. This is an exaggeration because Grady Booch has estimated that collective-
ly, humankind has produced a total of about a trillion lines of code since programming as we know it began in
1945.

The phrase “imagine if you will…” refers to a TV series in the US which ran from 1959 until 1964 called “The
Twilight Zone.” The show was a fantasy or science fiction anthology hosted by the writer Rod Serling. Each epi-
sode was the enactment of a short story with a mind-bending premise or situation such as time travel or other-
worldly aliens or magic. Many people reminiscing about the show recall (incorrectly) that the introduction to
the show included the phrase “imagine if you will” (this phrase was never used), which introduced the situation,
and also always included the following, perhaps rephrased a little over the run of the show:

There is a fifth dimension, beyond that which is known to man. It is a dimension as vast as space
and as timeless as infinity. It is the middle ground between light and shadow, between science and
superstition. And, it lies between the pit of man’s fears and the summit of his knowledge. This is the
dimension of imagination. It is an area which we call the Twilight Zone.

In the study we found that the realities of ULS systems would seem like the Twilight Zone to most software
engineers and computer scientists, and in fact, though the study was and remains provocative, most main-

4

stream researchers, practitioners, and research funders believe that as difficult as the challenges are for creat-
ing and maintaining ULS systems, industry will solve those problems as a matter of course. Judge for yourselves.

The definition we first used for ULS seemed to capture a fundamental characteristic: that a ULS system was
one that we could not now build. This definition, though, foundered because it held out a ULS system as some-
thing always beyond what could be built—a ULS system was whatever happened to be just over the horizon.

The reason a ULS system is so large is that it provides lots of functionality, typically in a focused area of con-
cern. An example of a ULS system (that doesn’t yet exist) would be a healthcare system that integrates not only
all medical records, procedures, and institutions, but also gathers information about individual people continu-
ously, monitoring their health and making recommendations about how to improve it or keep it good. Medical
researchers would be hooked into the system, so that whenever new knowledge appeared, it could be applied to
all who might need it. Imagining this system, though, requires also imagining that it is protected from the ad-
versaries of governmental and commercial spying / abuse.

We now look at the characteristics that make ULS systems seem like a twilight zone to many mainstream
software engineers and software researchers.

The most important characteristic is that a ULS system is huge, which means that its deployment must be
complex and diverse—it is not a room full of blades running Java applications. It’s enormous because it provides
a lot of functionality. For size, think of the entire Internet in California—but don’t think of this portion of the

Internet as a ULS system. This portion of the Internet doesn’t support a coherent set of functionality—it’s a col-
lection, and its size is by aggregation, not by what would appear to be a design. The population of California, for
comparison purposes, is about 37 million people.

The components that make up a ULS system are diverse as well as many, ranging from servers and clusters
down to small sensors, perhaps the size of motes of dust. Some of the components will self-organize like swarms,
and others will be carefully designed. The components will not only be computationally active but also physical-
ly active, including sensors, actuators, and in some cases weapons or other mechanisms of physical self-defense.
The hardware and software parts will come from diverse sources, will not homogeneous, and will originate in
different times and places. Some of the components will be legacy. If we will see a true ULS system in 20 years,
some of it has already been written—perhaps or probably by people who don’t believe that ULS systems can be
built. Different kinds of people will be using the system at the same time and over time.

The software components will be written in a variety of languages and for a variety of hardware platforms.
Even the computational metaphors will be many and diverse—don’t expect there to be only object-oriented ar-
chitectures.

The components will come and go, joining and leaving the system in both planned and unplanned ways.
Parts of it will need to be real-time, some of it will be embedded, most of it distributed.

The system will last for a long time—something that large won’t be used once or briefly. It probably won’t be
installed in the sense we know today, but will grow in place while running. People won’t run make to produce it

5

or fix bugs. Some parts will be very old (at least 25 years old, just as is the case today with some of our systems).
This means that a ULS system needs to survive infrastructure and technology changes.

Because, in general, there will be adversaries (competitors, changing and dangerous environments, perhaps
literal enemies), the ULS system will be part of an ongoing arms race where the design and realization of the sys-
tem will be evolving over time and sometimes simply changing. The operating environment will also be chang-

ing (different and new hardware, changing topologies and geometries, etc) and complex, and therefore the ULS
system must be able to adapt to these changes.

The changes must be able to be made while the system is running, not as part of a large reboot or reset.
Installation cannot be part of a change. The conditions
under which the system must effectively operate will be
emerging over time and will rarely if ever be static or pre-
dictable.

The hardware and software configurations will be
changing, the users, loads, and demands will be chang-
ing, upgrades will take place, tuning will happen, alter-
ations and adjustments will be made under policy con-
straints and sometimes in an ad hoc manner. The system
will be sufficiently long-lived that data and encoding
changes must be survived as standards change out from
under the system.

Despite our best efforts, the ULS system will suffer
continual failures of both hardware and software as both

6

hardware and software components are stressed beyond
their designed-for capabilities. Operating environments
will be changing as failed hardware is replaced (some-
times), hardware and software are upgraded and some-
times downgraded (meaning that different versions of
the same components will be running at the same time),
and configurations change. While repair and self-re-
pair take place, the ULS system must continue to deliver
whatever functionality it can.

A ULS system can be thought of as a system of sys-
tems, though a system of systems hints at a more coher-
ent architecture and design than we imagined a typical
ULS system would exhibit. Moreover, we didn’t believe
that a ULS system would be as clearly hierarchical as a
system of systems implies. But, the scale of the ULS sys-

tem is beyond what a human operator can deal with—while both monitoring and making adjustments—except
at a very high and coarse level.

Therefore, a ULS system must be able to operate mostly or fully autonomously, monitoring itself and adjust-
ing itself. In this, a ULS system begins to demonstrate some of the characteristics of a living system.

One of the most difficult-to-understand characteristics is that the system is not closed in the traditional-
ly understood sense. It interacts and interoperates with
other systems, which can be thought of as ephemeral
parts of the same ULS system, and also with the physical
and human worlds. A ULS system is quite like an agent
in the real world, sensing, making sense, and acting; and
also like an agent in the human world. The people who
interact with a ULS system are actually part of it. To see
how this can be, think of some part of the ULS system
that is monitoring another part, adjusting it, and thereby
keeping it in trim. You can imagine an exception handler
or an event handler for this example. Now picture that a
person is serving that role: observing and correcting or
adjusting the behavior of the system, much as a dedicat-
ed system administrator does, or an operator at a nuclear

7

power plant. In an important sense, it doesn’t matter too
much whether code or a person is on the other side of an
API or communication protocol.

Not only do ULS systems fail to live up to Fred
Brooks’s ideal of being designed or architected by a sin-
gle mind (in order to achieve conceptual integrity), a ULS
system cannot be designed by a single team of any size.
The teams that design and create a ULS system are dis-
persed, with different schedules, different processes, dif-
ferent stakeholders, and different goals. In fact, not only
are they dispersed in space but in time, which means
that the fundamental ideals, principles, and philosophies
of the teams can be totally disjointed and incompatible.
Therefore, revisions and changes will never be coordinat-
ed in any sense, and probably not even coherent; they will
appear discontinuous or even random.

Requirements engineering is thought by many to be the secret to good and high-assurance designs. But be-
cause ULS systems are so off-scale and the design efforts so uncoordinated, the requirements—if a complete
set can even be determined—will be uncoordinated, dis-
joint, out of kilter because the stakeholders are so dis-
connected. The requirements will be defined at different
times, in different places, by different people, using dif-
ferent methods, and operating under different philoso-
phies. With inconsistent requirements, the design will
appear out of kilter, but the ULS system must tolerate its
own inconsistencies.

These observations have hidden within them an even
more difficult fact. The size of a ULS system and its com-
plexity make it beyond human comprehension. Its de-
sign is also beyond human comprehension. And perhaps
both it and its design are beyond machine comprehen-
sion. Therefore it cannot have conceptual integrity of the
sort Brooks says we need. Attempts to understand a ULS
system will need to use the techniques of natural science. The sheer volume of the problem, design, and solu-
tions spaces—if such terms even make sense—exceed present capabilities for reliable design, development, and
evolution.

Because the most obvious and seminal characteristic
of a ULS system is its size, I want to take a few minutes to
give you a sense that is less abstract than number of lines
of code of how large a ULS system can be.

One way to look at it is how difficult it would be to
produce a system of the right size by coordinating the
work of a number of individuals. Imagine that you have
been given 2.5 pages of distinct Java code from every per-
son alive on the planet today (about 6.7 billion people
as of the date I gave this talk). Though this really just
equates to lines of code, it links the complexity and size
of the system to the complexity and difficulty of trying
to integrate the chunks from so many people, and pre-
sumably the difficulty of communication among them to

8

produce something coherent. This makes it easier to see that the difficulty of the ULS system is not in piling up
the right (large) number of components or lines of code.

Another way is to try to map the software system to a physical analog and see how large that analog is. Let’s
look at the number of classes / objects that would make up a ULS system were it implemented that way. There
are about 187 lines of code in the data and method definitions for a single class. There are therefore about 5.34
billion classes / objects in a large ULS system—that is, a ULS system of the size I’ve been trying to scare you with.
The analog I’ll use is a house. The first picture (above left) shows a block from a suburb of St Louis, Missouri, a
large city in the American midwest. The turquoise rounded rectangle has about 32 houses or buildings within
its borders. Let’s take that density as the uniform density of classes / objects in a ULS system. To put that anoth-
er way, let’s assume that the ULS system is a tract of houses that is as dense as this region throughout, and let’s
want to see how large a geographic area the ULS system takes up.

The picture in the upper right is a zoom out from the first one. The turquoise border is still visible. The pic-
ture in the lower left above is a further zoom out—here the Mississippi River is visible, with the central part of St
Louis shown as a darker rectangle. The final image is the lower right, which shows how large an area is required
to hold the housing tract that represents the size of the ULS system. For those who have a more gut-level feel for
geography in Europe, the picture at the top of the next page shows roughly the same area as the area in the US.

When reckoned with this way—this visual way—it indeed looks as if building ULS systems will be difficult
almost beyond human capabilities. But in the study we also concluded that ULS systems will
appear even if we do nothing—by the slow creep of size that has been going on since the begin-
ning of programming.

9

The question, though, is how we get there from here
in a reasonable, deliberate manner. I’ve heard many peo-
ple state that the answer is to aggregate components, or
modules. In this way, ULS systems can be achieved al-
most through an additive process, or at worst like a pro-
cess similar to putting together a jigsaw puzzle. The
argument goes that we know how to build modules or
components, and making a large system—a ULS sys-
tem—is just a matter of aggregating and/or integrating
them. The analogy is the we know how to design and
build houses and buildings, and so building a city should
be easy: it’s just building a lot of houses and other build-
ings.

The picture just below is a sample of the sorts of

houses and buildings we can build. The one in the lower left of that picture is a (fancy) mud hut in Africa; the
one to its upper right is a house in Levittown, New York (on Long Island); the one to its upper right is the Frank
W. Thomas house in Oak Park, Illinois, designed by Frank Lloyd Wright; and finally the upper right is the CSAIL
Building at MIT—formally it’s the Stata Center and was designed by Frank Gehry.

The metaphor seems to hold when we look at New York. An aerial picture reveals that Manhattan is a large,
mostly ordered collection of buildings. One of the approaches the ULS study group determined was useful to

explain the complexities of ULS systems is to liken them
large cities, so this analogy is good. However, unlike the
metaphor that says that a ULS system is simply like a city
which is a collection of buildings, the metaphor as ex-
plored by the ULS study group requires us to look deeply
at what a city is and how it operates in order to appreci-
ate that a ULS system—like a city—cannot be simply an
aggregation, and how scale changes this qualitatively

Let’s look at New York more closely. First, notice that
there is a network of streets and alleys. Some are quite
broad and others narrow and inconvenient for most or
any traffic, but aid with deliveries and garbage collection.
Streets enable people and goods to move about and to
and from the city.

10

There is a system of subways—some parts are actually underground but some run overhead. These are in
place for two reasons: Manhattan is so crowded that traveling by car is not practical, and cars and taxis are too
expensive for many, particularly when commuting. Further, there is a shortage of parking.

Another mass transit system uses the streets: buses. There are a variety of tradeoffs regarding when and how
to use these three mechanisms for transport, but many cities use all three and sometimes others.

There are systems of power, communications, and sewers in New York. Power and communications are
sometimes above ground; sewers are thankfully below ground. Without these three things, New York would not

be considered to be out of the 19th century. Additionally,
water is transported to the city and distributed to people
and companies.

There are bridges, docks, and in general the Port of
New York. Bridges enable motor traffic to and from other
parts of the country; docks enable the import and export
of goods and travel to and from New York—both to the
rest of the country and overseas. The Port is what made
and makes New York one of the great cities of the world.

Because people live in the city, there is an economy
that makes the city work. In fact much of the design of
the city is driven by economic factors: where companies
and stores are located, where housing is built, zoning
laws to roughly organize the expansion and evolution of

11

the city are in many cases determined by economic fac-
tors. A large fraction of the activity of the city is dedicat-
ed to feeding its inhabitants.

There is a culture to the city, determined by its people
and the cultures of their ancestors, but also there is a cul-
ture that is the product of the attraction the city has for
artists and craftspeople. When someone near New York
wants to see a play, hear the symphony or opera, look at
paintings and sculpture, that person heads to the City.

Because there are many immigrants to New York,
it is multi-lingual and multi-cultural. This means that
sometimes you need to use a simplified English or a sort
of pigdin or even an ad hoc sign language to communi-
cate, or engage a translator on the spot.

New York is a combination of the old and new: old
and new buildings, old and young people, old and new technology, etc. It was not made at once and uniformly.

The city exhibits a variety of scale—from immense and immensely tall buildings down to cardboard boxes
under bridge overpasses. Scale of size, scale of cost, complexity, convenience, etc.

Because New York is a large and complex human place, it needs sets of services like police (law enforcement),
fire departments, and garbage collection. These maintain order, safety, and sanitation. There must be a sys-

12

tem of governance to maintain order. Laws, regulations,
zoning keep the city running well and evolving in a rea-
sonable manner.

The city is constantly being repaired and built. Old
structures are modified or torn down; new ones are
built, damage is repaired, streets, power lines, commu-
nications, the sewer system, transportation, etc are all
repaired as and when needed. Cities continue to grow
until their usefulness requires them not to.

And when repairs aren’t undertaken, the city falls
into decay then rot and finally ruin and disappearance.

When viewed this way, a ULS system seems unlike—
very unlike—what most software engineers and com-
puter scientists consider a proper system or program.
In an email to a mailing list I’m on, Eric Raymond said,

“The mathematician in me craves [the] ideal world of
verifiably correct components assembled into provably correct systems.” He went on to say that all the hard
benefits in such a statement hide behind the fact that people—who make mistakes—need to produce all the de-
signs, the code, and the proofs. That is, all the ideal benefits are anchored to the fallible human. This seems to be
a weak retreat in the face of the overwhelming differences between the image of the clarity of mathematics and
the messiness of the ULS system as analog to New York.

h h h

The difficult question ULS systems beg is how we will
be able to design such systems—so large, so complex, so
diverse in components, scale, and age, and so widely dis-
persed in its builders and deployment. Design of such
systems don’t take place in one place, at one time, and by
one organization, so we need to be able to design under
those conditions.

Open source might seem to be a model for how to
proceed, but open-source projects are actually very small
scale, too focused in functionality and scope, and too
old-fashioned in terms of the process and technology
that is used. What open source can teach us, perhaps, is
how to design in the face of geographically dispersed de-

13

velopers—but even here almost all open-source software
is designed by a single person or a small group, and only
the fringes of the system are available for extension by
volunteers.

Returning for a moment to how various people define
design, Guy Steele said on one occasion that design is

sufficient information for a craftsman of typical
skill to be able the build the artifact without exces-
sive creativity.

This definition echoes Carliss Baldwin’s a bit, and
mentions two aspects of the building part of design &
build that might strike some as not obvious: that build-
ing requires craft and creativity. For many, the designer

has done all the creative work, and for software the craft
perhaps means the ability to write clean and stylish code
rather than being a skilled software designer.

h h h

Now I’ll turn my attention to some work by Adrian Thompson to see how we can approach designing ULS
systems. He defines three of what I call MetaDesign Spaces. A metadesign space is an approach to how to design
based on what is known at what points in the design process. Pictorially, I depict a design as a blueprint, and
from the blueprint, a builder can build the design, much as Steele says, with some craft and creativity. The de-
sign process, then, is this: given a vision of what is needed to be designed (and the vision can be as complete or
incomplete as is necessary) how do you go about deriving the blueprint?

In the first of the three spaces—MetaDesign Space 1—it is assumed that it is possible, given the vision, to
work all the way backward to the design. That is, it’s as
if you considered the mapping from a blueprint to the
built thing a function, and that function were invertible.
It might be that the inverse produces a “blueprint” that
doesn’t always exactly produce the same building—the
craftsman using understandable but not excessive cre-
ativity might build something slightly off, but not off
so much that the result is not recognizable as the right
building, but that doesn’t matter too much to the basic
idea.

If we were to approach designing a ULS system as-
suming that the inverse model could work, what would
we have to do in order to handle the scale-related issues
that make ULS systems not like systems today. This ap-

14

proach means coming up with the entire design before
building any of it—the classic, or should I say caricature,
waterfall method (without any feedback loops). The key
hint comes from Steve Metsker who says that design
takes place “up a level” in the abstract, in the “realm of
ideas.” Because ULS systems represent an extreme, de-
sign-up-front requires our abstractions to be giant sized
and super powerful, and, more importantly, the machine
of abstraction itself needs to be ever more powerful. We
need better programming languages—languages much
further away from both the machines on which they run
and also from the mathematical foundations on which
many of the programming concepts we use are based.
We need, also, a better understanding of the concepts we
do use—such as what an error is and how to handle it.

We also need to learn new designs, design frameworks, and design approaches from naturally occurring, ul-
tra large scale systems (e.g., biology, ecology).

Current mathematical models for software treat it as a closed system, divorced from other software, devel-
opment tools, and, most importantly, the real world.

We need to be able abstract over things we haven’t abstracted over before: control, time and history, events,
relationships (and their harmony or disharmony), and errors. Abstractions that are intended for use as models
for the real world need to be tied to semantics that relates to the real world in such a way that other abstrac-

15

tions that operate on the things already modeled have a
chance of making sense when put together. And because
software artifacts need to exist in a computational world,
these artifacts have to be able to participate along with
other such artifacts in the making and building that goes
on there.

One of the concepts we’re familiar with as computer
scientists is modularity. As we’ve come to know it, modu-
larity is almost entirely about separation or spatial com-
partmentalization—originally (as best as I can tell) from
the conceptualization of modularity by David Lorge Par-
nas who was looking for how to break up work. What
some people later called a module (Parnas didn’t seem
to) was a work task that could be separated for a person
or group to work on with minimal communication with

those working on other modules. In order to do this, the minimal information to be shared became what we
now call an interface or API. All the other information (such as the implementation) was hidden—not because of

some mechanism of the programming language, but because by hiding a lot of information, the people working
on one module didn’t have to talk to the other teams much. Later this was turned into language features.

But other disciplines use the concept of modularity—biology, for instance. Biologists think of a module as
representing a common origin more so than what we think of as modularity, which they call spatial compart-
mentalization (it’s from biology that I took this term).
There are a couple of examples. One is the liver, which we
might think of as a module because it is something that
can be physically separated from a living being. But a liv-
er does lots and lots of things, so it doesn’t really conform
to our naïve idea of what a module should do—one or a
few related things, and in Parnas’s vision, those things
usually depend on a particular representation choice.

The common-origin definition from biology is relat-
ed to the Parnasian approach in that a module is some-
thing that is produced by a single person or a single team.
A group of genes is called a module if that group (by pro-
ducing proteins at the right time etc) mostly builds one
recognizable thing (an organ, for example) that mostly

16

does one thing—but it’s ok to contribute to building some other things, and it’s ok for the main thing built to do
some other things as well.

Another apparent module (in the computer science sense) is a cell within an organism that has an immune
system. A cell has an outer membrane that separates it from its environment (which is within the body of the or-
ganism). This reminds us of the concept of encapsulation. However, there is no absolute information hiding go-
ing on here. For the immune system to work, other cells “communicate” with the innards of a cell using proteins
that protrude through the membrane from the inside of the cell. These proteins contain identity information (is
this cell part of self?) as well as other indicators of healthy operation. When a cell is not healthy, an outside cell
that’s part of the immune system can command the cell to destroy itself without spreading toxins.

This goes against our understanding of how modularity should work—and contradicts our view as computer
scientists that encapsulation means information hiding. This is what I mean when I say we need to rethink our

concepts in view of ultra large scale systems. Biological
systems are very much larger than anything (coherent)
that people have built. If we are to design with a blank
sheet (so to speak) before building (metadesign space 1),
we should look at these other, naturally occurring sys-
tems and learn how our concepts are like and not like the
ones that operate there and adjust accordingly.

We need to learn how to compose components de-
signed and built independently—by different groups, at
different times. We need to look at other kinds of ways
of getting things to happen in the system—other mecha-
nisms than procedure/function/method invocation.

One idea is for components to engage in dialogs (or
do the equivalent) rather than just sending commands

(or the equivalent). Today our systems act like a tele-
graph system, complete with a code for how commands
(and arguments) are passed; these commands, the code,
and how arguments are passed are generally very inflex-
ible, and this is because by being that way, compilers and
other tools can find particular sorts of errors and the sys-
tem can run fast. What ULS systems teach us is that this
inflexibility hinders our ability to design and build the
systems in the first place.

Another idea is phenotropics, a concept devised by
Jaron Lanier. Roughly “phenotropics” means surfaces
relating to each other. Using phenotropics, two entities
would interact by literally observing (through pattern
recognition) the surfaces of each other, thereby causing

“control” and activity.
Another approach is for components to give off

“smells” that indicate their needs, desires, states, etc, to
which other components can react. Such an approach
would enable systems to do something when normal, or-

17

dered communication fails. One could imagine one component happening upon another and thinking (or say-
ing), “you look ill; can I help you somehow? How about a blanket? How about being reset? Can I garbage collect
your internal stuff for you?”

Likewise we need to think about correctness differently. In the minds of most computer scientists and pro-
grammers, a bug is a real problem, and each one must be fixed. Martin Rinard questions that assumption, and
argues that systems with bugs can still be valuable and useful. And that sometimes the act of trying to correct
a flaw can cause more problems than are eliminated—by incorrect assertions and flawed exception handling.
An example of this is a video game. Suppose you are playing a first-person shooter. The graphics are probably
based on triangles to represent texture etc, and sometimes some triangles are degenerate (actually display as
lines). When you do trigonometry on such triangles, you might divide by 0—a real horror. What to do? Instead
of worrying about it, if this divide always returned 7, for example, there would be no real problem—because per-
haps all that would happen is that one pixel is the wrong shade of green for one frame. Who would notice; who
would care?

Rinard says that there are two types of code: forgiving and unforgiving. Forgiving code provides useful, ade-
quate functionality even when there are some bugs, while unforgiving code is code that must be correct in order
for the software to produce usable functionality at all. There is probably, he says, a lot more forgiving code than
unforgiving in a system. And if bugs are uniformly distributed in the code base (which is usually false, but that
might not matter if the sizes of the two regions are incomparable), then there are not too many bugs that must
be fixed. He and some of his students are looking at real systems and proposing simple mechanisms that make
the code more reliable and still work pretty well by ignoring or covering over errors.

18

For many years the progress in physics was such that
it was believed that once the fundamental laws and prin-
ciples at the lowest levels of the physical world were un-
derstood, so would be everything above it. Once we knew
about subatomic particles, we would know how they
combined to make up atomic particles. Then we’d know
how those made up atoms, and how those made up mol-
ecules, etc, all the way up to psychology, sociology, and
all of the rest. That is, there was a strong belief that once
the lowest levels of the “physics stack” were understood,
we’d be able to simply apply various aggregation laws to
understand all the other physical phenomena above.

But in 1972, P. W. Anderson wrote a paper that many
physicists thought was baloney, and the paper said that
every level above required its own science, as it were, be-

cause the scale and complexity of those upper layers
meant they had their own distinct laws, not predictable
easily or at all from properties of the lower levels. This in-
sight happened, probably, in conjunction with other in-
sights that later became the basis for complexity science.
I believe the same principle holds for software at ultra
large scale: understanding the lower layers—no matter
to what degree of faith—doesn’t help us understand the
whole system better or even at all. This means that the
metadesign space 1 approach won’t work completely.

This leads to MetaDesign Space 2; it is based on the
idea that if we cannot fully invert the blueprint to build-
ing mapping, maybe we can invert smaller steps of the

process. That is, we can probably predict well enough
what a simple design / building step will do given an al-
ready partially designed and built system.

This is an iterative approach; it is similar to any of
the agile methodologies and Christopher Alexander’s
Fundamental Process. The agile methodologies, by the
way, were not originally discovered by programmers
in the 1990s. The principles and practices have been in
place in every design and building discipline for millen-
nia. The agile folks mostly provided some good names
and descriptions for what was already known in the pro-
gramming world but without those names and descrip-
tions. These served to help break us loose from the grip
that programming methodologies based on metadesign

space 1 (design before building) had on us.
Alexander’s design and building process is essentially to design a little and build a little. This is followed by

a learning and evaluation step, followed by more design and building.
Let’s look at another definition of design—this one by Jim Coplien. It fits in pretty well with metadesign

space 2 in that it talks about a series of steps each of which reduces the distance (though he doesn’t use the con-
cept of distance) between the current (problem) state and the desired (solution) state. This definition views de-

19

sign as a problem-solving activity, which probably many
computer scientists and programmers would agree with
or at least feel at home with.

How would we design and implement a ULS system
using the metadesign space 2 approach? It turns out this
approach is the most likely to succeed in the near term.
Essentially, design and implementation would be done as
a complex adaptive process in which individual organi-
zations and designers operate under a set of local rules
mediated by shared artifacts. This is how Alexander’s
pattern language works and his Fundamental Process.
What is already designed and built is sitting in front of

us. We can learn from that as Coplien indicates. A pat-
tern language (or any other set of design rules as Carliss
Baldwin calls them) gives us hints about what to do next.
We do that and repeat until we’re done.

This is the first place where we see what is meant
by “design beyond human abilities.” By using a complex
adaptive system approach, it’s possible to think about
how to design and build things that no individual or in-
dividual group could. As you think about this, keep in
mind P. W. Anderson’s quote: the scale and complexity of
the thing designed and the design organization make it
impossible to predict what individual acts of design and
implementation accomplish at that next higher level.

This is essentially swarm design. The original name of the process that Alexander uses was piecemeal growth.
Another aspect to it is machine design, in which computers or some other mechanical process assists people.
Swarms of termites are able to construct elegant nests by using local rules and signals from the physical world
(called, in biology, stigmergy). New York, for example, was built using swarm design and piecemeal growth. Nat-
ural features (the rivers, existing animal paths) laid down some constraints; a few people built and newcom-
ers adapted to what was already there; organizations came in when trade began (aided by the rivers and port);
streets sprang up on the existing paths, and people’s proclivity to building in rectilinear fashion made streets
more regular (as did the tendency to build towns to look like the ones already seen); later zoning and other

20

building codes laid down further constraints. New York was built over hundreds of years this way. No one re-
ally foresaw what New York would be just as we cannot see what it will become. Part of this has to do with who
comes to live there—people bring their culture and thereby change the existing culture. Will New York be a fi-
nancial center as it has been for 150 years or more already? Will be more of a cultural center like Boston has
been? Or an educational center (again as Boston has been)? Will it be progressive like San Francisco or conser-
vative like Atlanta? Depends on who moves there which depends on economic and other winds—sometimes lit-
erally the winds of climate: what if it becomes a lot colder, or warmer?

h h h

Now we get to the interesting part. How do we design something that we can envision but which we have no
real clue about how to achieve? We cannot design from scratch because the jump is so big, and even being able
to predict what small changes would achieve can’t work. The leap is too large and the territory too unfamiliar.

This is really the realm of pure creativity—though it’s possible to be creative with mere bushwhacking and a
sense of what is good. The only alternative, according to Adrian Thompson, is MetaDesign Space 3: evolution.

He means evolution in the senses of both natural/biological and digital evolution. Evolution is really just a
randomized search for how to achieve a predicate-defined goal, along with a strong component of combining
good parts of existing solutions.

One of the doubts about this approach is how practical it could be. We know (most of us, anyway) that bio-
logical systems have achieved their scale and complexity through evolution, but the scale of the natural organic
world in both size and time is beyond, in both cases, what we need for ULS systems, and we certainly don’t have

21

millions or billions of years to design and implement ULS systems. The question is what can be designed and
built quickly.

To show that evolution is not a ridiculous idea, I want to look at an experiment Adrian Thompson’s group
did. The idea was to design a circuit that could distinguish between a 1kHz and 10kHz square wave. The circuit
would have a series of bursts of 1kHz and 10kHz signals intermixed and return a 0 whenever the 1kHz signal
was present and a 1 when the 10kHz signal was. The raw material is a 10x10 section of a field programmable gate
array (FPGA). The FPGA part (the actual chip) that was chosen has a 64x64 grid, but only the upper lefthand
corner (10x10) was used. Each cell of the array looks like the figure below and to the right. There are 4 inputs—

North, South, East, and West—and 4 outputs. Each output is selected by a multiplexer that, for each direction,
chooses from the outputs of other 3 directions along with the output of the function unit. The function unit can
compute any boolean function of 3 arguments, and each of those 3 arguments is selected, by a multiplexer, from
the 4 inputs to the cell. An FPGA is called “field programmable” because the choices made by the multiplexers
and the function computed by the function unit can be specified/supplied after the part has been built and in-
stalled—out in the field. Eighteen (18) bits is required to specify all the multiplexers and boolean function, and
so 1800 are required for the entire 10x10 FPGA that was used in the experiment.

A genetic algorithm was used to determine what those 1800 bits should be. In the genetic algorithm used, a
population of vectors of bits is used to generate a set of offspring which are tested for fitness. A child is created by
selecting at random 2 parents. Then a cut point is chosen at random. The child’s bits are determined by taking
the bits to the left of the cut point from one parent and putting them in the corresponding positions in the child,
and the remainder are taken from bits to the right of the cut point from the other parent. Then the child under-

22

goes a set of mutations which changes some of the bits in its vector. In this experiment; the population was 50
vectors, and genotype was 1800 bits; the likelihood a vector in the population will be chosen to breed was 70%;
the number of bits expected to be mutated in each child was 2.7; the best 50 of the combined original and child
population were chosen as the new generation (elitism).

After 5000 generations, a good solution was found.
The experimental setup was this: An actual FPGA was used. It was hooked up to a computer that ran the

genetic algorithm. To test fitness of a vector in the popu-
lation, the computer loaded the configuration from that
vector into the FPGA. Then a series of test signals were
sent through the FPGA, and the integrated results were
used as the fitness. This means that the integrator mea-
sured how long the output signal was high or low over
the testing period for each configuration, resulting in a
number, and this as compared to the expected number
to yield a fitness result.

Here is what was evolved. The circuit needs to see
the first entire high waveform of the 1kHz or 10kHz se-
quence to get the answer, and the answer is asserted (the
output signal goes high or to zero, as the case may be)
within 200ns (nanoseconds) of the end of the falling edge

of that first high waveform. The delay though each cell in
the FPGA is 5 orders of magnitude shorter than the du-
ration of the shorter of the 2 possible waveforms. That is,
the circuit cannot be directly measuring the duration of
the waveform because there aren’t enough elements (by a
factor of 1000) to do the measurement. And although the
FPGA part used typically uses a clock (to enforce digital
logic), the circuit was not supplied with one. This means
that though FPGAs are thought of as digital devices, the
evolved circuit operates as an analog circuit.

In one of the papers on this work, Adrian Thompson
and his co-authors state that the resulting circuit is “…
probably the most bizarre, mysterious, and unconven-

23

tional unconstrained evolved circuit yet reported.” As
we’ll see, it is bizarre beyond anyone’s wildest hopes for
strangeness.

Looking at the connections in the 10x10 portion of
the FPGA we see some oddball things like loops and cy-
cles. These diagrams don’t show the functions computed
by the function unit. The obvious question is how the cir-
cuit works.

There are several ways to try to figure it out. One is
to start at the output and trace backward to the input,
marking cells whose function units are used. This is like
a garbage collection of the cells considering the output
cell as the single root. This doesn’t help much, it turns
out.

Another way is with a technique called “clamping.”
One by one, each cell’s function unit is set to return a constant 0 and the entire FPGA is tested to see whether it
still works as it did before the clamping. When we do that, we find a more manageable circuit—the diagram with
the red cells below shows it. This diagram begins to show what is peculiar about this circuit. The function units

of the red cells are not used by the circuit, but nevertheless, when those units are clamped, the circuit doesn’t
perform. Ignore the upper lefthand cell in the diagram: The remaining red cells are used only as routers—that is,

they are essentially wires in the circuit (logically).
That upper lefthand red cell, though, is particularly

interesting: It is not directly connected to the active part
of the circuit at all. It doesn’t appear in the diagram that
shows all the cells that could be involved in the function-
ing of the circuit. Yet if its output from the function unit
is clamped, the overall circuit doesn’t function.

Another way to understand the circuit is to look at
the circuit diagram for it. That’s on the next page at the
top left. The circuit has 3 parts, A, B, and C. Each involves
a feedback loop. Part C is odd because its feedback loop
is just an even number of inverters, which amounts to a
delay.

24

Here are some strange things about the circuit. Recall that the training / evolution process used an actual
FPGA; when a different physical part is substituted for the one trained on, the circuit doesn’t work as well—the
evolution was particular to the physical part that was used. If you make the circuit in the diagram with CMOS,
it doesn’t work. If you simulate the circuit with one of the commercial simulators, it does nothing.

The most intriguing behavior is how the circuit gets
the answer. As noted earlier, the right answer (did it just
see a 1kHz or a 10kHz waveform) is gotten 200ns (nano-
seconds) after the trailing edge of the first high wave-
form, which means that whatever interesting that’s hap-
pening is happening when that waveform is high. But, as
far as anyone can tell, absolutely nothing is happening in
the circuit at that time.

When the input goes high, the feedback loops in parts
A and B are cut, and therefore those parts of the circuit
revert to digital logic and are static. Part C is observed to
be static. Observing the circuit when the input is high re-
veals that the power levels are quiescent, there is no ac-
tivity in the feedback loops, there are no short pulses or
glitches anywhere, there is no thermal activity, there is

no rf activity nor response to rf—putting the whole affair in a Faraday cage doesn’t change its behavior. In short,
no observation shows anything happening at all. To be fair, some of the observations are intrusive enough that
they could be masking the phenomenon they are trying to detect.

25

The final way to understand the circuit is to look at
its evolutionary history. Generation 650 is the first one to
exhibit any difference in behavior between the long puls-
es and short ones. When a long pulse is high, there is no
activity in part A through the feedback loop. Right after
the pulse goes low, the feedback loop starts to ring quick-
ly. After a short pulse, the loop rings more slowly. Gener-
ally, this behavior is retained until generation 5000, and
the rest of the evolution produces parts B and C to turn
this bistability into the correct output—and how parts B
and C achieve this is well understood. What’s not under-
stood what causes this bistability in part A.

Let me make sure this point is clear. No one under-

stands how the circuit fundamentally works because as
far as any observation can reveal, during the crucial pe-
riod, absolutely nothing is going on at the physical level.
Most likely, whatever is happening is not possible to de-
tect with ordinary techniques.

When the experiment is changed so that several parts
are used simultaneously at different temperatures (one
in an oven, one in a refrigerator, and one at room temper-
ature—this is slightly exaggerated), a circuit is evolved
that works well and is understandable. Similarly when a
logic simulator is used instead of the real part.

h h h

Using evolution, there is no real distinction between design and implementation. You basically build the
thing, test how it works, and then combine/mutate to search the design space via the implementation space.
As we’ve seen, the technique can explore regions of the design space that are not usually explored. The method
doesn’t rely on human understanding, which means it doesn’t care about understandability, modularity, beau-
ty, or elegance. And watching the progress of the process might not reveal a coherent direction. If a student re-
ported any of the intermediate circuits much before generation 4100 when it settled into something that worked
pretty well, any professor would easily conclude no rational progress was being made—the behavior of the in-

26

termediate stages are ridiculous except when considered in the aggregate (from the point of view of the analog
integrator).

In response to this, Adrian Thompson questions whether using functional decomposition is the best way to
think about the concepts of “understanding” and “explanation.” In short, he is asking whether our reductionist
way of thinking (which reaches its apex in computer science and software engineering) is serving us well.

Further is the question whether a process like digital evolution is actually producing a design. Do we require
a human for something to be a design? If not, then who, for example, designed the circuit we’ve been looking at?
The genetic algorithm? The person who designed the genetic algorithm program? The person who designed the
fitness function?

Or do we need to understand the thing created and produce an understandable design before we can say that
evolution has produced a design?

h h h

Getting back to ULS systems, it seems that evolution asks us to look even more deeply at the idea of design-
ing beyond human abilities than even metadesign space 2 (complex adaptive systems) did. We need to look at
mechanisms that design and produce code, perhaps from models understandable to people, but whose results
might not be (at least not easily). Automated reasoning might be an important technique—this was the thrust
of a lot of automatic programming work in the 1970s and 1980s.

But the tough question is what we can trust digital evolution to design.
As mentioned, ULS systems will contain multiple versions of the same component. Rather than permitting

chance to dictate which one is used where, perhaps digital evolution could be used to produce code that selects

27

or combines the versions depending on context, arguments, conditions, etc. One could think of this as an exten-
sion of the idea of polymorphic functions—methods whose selection is based on its arguments. Other types of
dynamic method selection an evolutionary approach would generalize include two-dimensional method selec-
tion which is based on the arguments and identity of the sender and context-oriented programming which se-
lects a method based on the arguments, the identity of the sender, and any part of the visible context. The evo-
lutionary approach is different because the selection can be more dynamic and also the selection process can be
tuned by a fitness function directing an evolutionary process.

Or, evolution could be used to complete the implementation details below some threshold. An example
would be completing the loop and loop-termination details in a program. These details are often the subject of
errors by programmers.

Or, evolution could be used to determine the details of homeostasis, the property of a system regulating its
internal state to maintain equilibrium and stability. It’s worth noting that while a ULS system already is re-
quired to be self-monitoring, self-correcting, and self-repairing, if we go to this next step, perhaps questions
arise whether it could be self-aware, self-designing, or even quasi alive.

That is, ULS systems could become more like living systems. Many of the feedback loops in a living system
are involved with the regulation of production of components, proteins, and other biochemical material that in

turn regulates the production of other things including
the regulators just mentioned. This is essentially the con-
cept of autopoiesis. Autopoietic systems are

systems that are defined as unities, as networks
of productions of components, that recursively
through their interactions, generate and realize
the network that produces them and constitute, in
the space in which they exist, the boundaries of
the network as components that participate in the
realization of the network.

–Humberto Maturana, Autopoiesis: A Theory of
Living Organization, 1981

An autopoietic system is one that is continually (re)
creating itself. It is an interrelated network of compo-

nents that build that interrelated network of components—that is, itself. And even though there might be deep
connections to an outer environment, the boundaries of the system are distinct.

The concept of autopoiesis flows, in a way, from Immanuel Kant’s analysis of living organisms:

28

… In such a natural product as this every part is
thought as owing its presence to the agency of all
the remaining parts and also as existing for the
sake of the others and of the whole… the part must
be an organ producing the other parts, each con-
sequently reciprocally producing the others.

–Immanuel Kant. The Critique of Judgment, 1790

In living systems, living is the ultimate goal. And so
the production of more living stuff and its adaptation of
that living stuff to the surrounding conditions is in many
ways more important than the nature of the living stuff
itself—as long as it can self-perpetuate (more or less).

Our programmed systems are not thought of this way.
What is important about a programmed system is what
it does. The software systems we produce are allopoiet-
ic: Allopoiesis is the process whereby a system produces
something other than the system itself. We are interest-
ed in this other stuff and don’t care about the mecha-
nism that creates it beyond the fact that it creates it. The
health and stability of the mechanism is beside the point
as long as the desired production happens. Allopoiesis is
the manufacturing process abstracted.

Kant has the same idea about what mechanical de-
vices are:

In a watch, one part is the instrument by which
the movement of the others is affected, but one
wheel is not the efficient cause of the production of
the other. One part is certainly present for the sake
of another, but it does not owe its presence to the
agency of that other. For this reason also the pro-
ducing cause of the watch and its form is not con-
tained in the nature of this material. Hence one
wheel in the watch does not produce the other and
still less does one watch produce other watches by
utilizing or organizing foreign material. Hence it
does not of itself replace parts of which it has been
deprived.

–Immanuel Kant. The Critique of Judgment, 1790

When a complex, programmed system needs to live for a long time, living becomes the ultimate goal. Cou-
pling this with the need to produce the right answers, we face the following daunting problem: How can we
structure a system which needs to recursively generate, realize, and produce itself as well as correctly produce
something other than itself? That is, how do we combine the correct and efficient function of an allopoietic sys-
tem with the urge to live of an autopoietic one that is continually recreating itself?

If we try to make a system more robust by adding lots of explicit exception handlers and error detection code
the program becomes hard to understand and very difficult to maintain. It goes beyond what people are able

29

to write reliably. This is what Martin Rinard is warning
us about.

Earlier research into building systems with autopoi-
etic characteristics tried to define a single programming
language or programming system to serve both purpos-
es—to operate both at the level of arithmetic and logic,
procedure calls and method invocations, and also at the
level of feedback, visibility, noticing, and living. Any pro-
gramming language that can operate at the allopoiet-
ic level is necessarily fragile, and so injecting those ele-
ments in the autopoietic system will break it as well.

 Perhaps it would make sense to separate the allopoi-
etic part of a system from the autopoietic part. The en-
compassing autopoietic system needs to observe itself
and its environment to know how to change and recreate

itself. It must also have some ability to observe and affect the operation of components of the allopoietic system.
The requirements of the two types of systems don’t line up, and so designing an autopoietic language / environ-
ment for allopoietic purposes is unlikely to succeed. Maybe the allopoietic part of the system should remain in
an allopoietic language (and runtime when that’s appropriate) while the autopoietic part can be in a separate
language—designed to do different things and with radically different characteristics.

The autopoietic language should have no ingredients that can cause errors of a nature as to crash a program
written in it. A way to think of this is that it must be impossible to write a program with a certain class of bugs
in it. Naturally, it’s not possible for a person to write a program with no bugs, so what I mean by this must be
elaborated. Some bugs are about the ultimate problem, such as getting differential equations wrong, updating
cells in the wrong order, or forgetting parts of a specification, while others seem centered around the business
of programming per se, such as typos, fencepost errors, failing to initialize variables, etc. These two classes of
errors feel very different.

The structure of a system made this way would be of the allopoietic part of it—the part that does what the
designers intended, such as banking or web serving—embedded in the autopoietic part, which would be respon-
sible, in a sense, for keeping the overall system alive.

A possible structure for this is to attach a monitor or autopoietic interface—called an epimodule—to each or
some allopoietic components in an allopoietic system. The purpose of the epimodule is to monitor the behavior
of the component and to alter it when needed. For example, an allopoietic system would include all its test code.
The epimodule would be able to pause the component, execute its tests, and examine the results. If a new version
of a subcomponent becomes available, the epimodule can direct the component to unload / unpatch / ignore the
old version, install the new one, run tests, and then either proceed or undo the whole operation.

One of the more important sets of capabilities of
epimodules would be to be able to clone and then kill a
module. Or, instead of killing the module, the epimodule
could tell it to self-destruct.

Here is another possible way to envision the allopoi-
etic / autopoietic structure. The blue boxes represent
allopoietic code—the code that does the real work and
red blobs indicate autopoietic code. The main big blue
box is a component in a larger (allopoietic) system. The
bump and string on top represent its normal interface
and connections—think of it as the method signature
and call graph. The darker (lower) bluish box inside can
be thought of as the epimodule interface. Its job is to im-
plement health- and repair-related operations within the

30

component, including things like the ability to run tests, to clone the component, to safely kill the component,
or to repair data structures. There could be others as well, such as a tap into the local exception handling and
event environments.

The red shapes outside the box, including the encompassing reddish rectangle with the rounded corners,
represent autopoietic code. The odd shapes that change shapes and shades from the outside to the inside of the
component (from oval to square and from red to blue) represent the epimodules that assist that component by
keeping it healthy and keeping healthy the entire system within which that component exists.

There is no need for epimodules to execute on the same computer systems as the allopoietic code it oversees.
Epimodules can execute on another computer system or systems onsite or offsite. Or perhaps in the future, some
of the many cores in the CPU can execute the autopoietic code. Epimodule execution can also be asynchronous
with respect to allopoietic execution. For example, the epimodules (the autopoietic system) can include exten-
sive simulations to set parameters (e.g. recompiling an allopoietic component with different compiler switches
to better tune it for actual use), determine the best configuration, design and implement more appropriate glue,
monitoring, or protection code.

The red, blobby, autopoietic components communicate with each other through the reddish background
substrate and perhaps by the action of autopoietic entities that operate in the substrate but which are not at-
tached to specific allopoietic components.

We don’t know much about what the autopoietic parts should be like. But my intuition says that nudging,
tendencies, pressure, and influence will be more important than exchanging control and data or traditional con-
trol structures and composition techniques.

31

At the conservative end, the autopoietic parts could be declarative, mostly descriptive—perhaps a set of wir-
ing diagrams for putting together the system from its components, and specifications of the conditions under
which to run tests, to clone components, to do internal repair, etc. These descriptions and specifications would
be interpreted much as a constraint system is to maintain the functioning of the system and its components. As
such, the descriptions might be ineffective but never broken.

At the more speculative (and intriguing) end, the autopoietic parts could be written in a language that might
be able to express only programs that are dimly aware of themselves and their surroundings, but aware nev-
ertheless. The red, blobby epimodules could be like living cells or other living organisms that are attracted to
components either generally or specifically—that is, some epimodules might be tailored for certain components
while others could be general. The epimodules would attach themselves to components and sense conditions,
both inside and outside the component, and exert pressure on the component to run tests, etc. They wouldn’t in-
teract through a traditional interface, but would sense as if sensing the density of chemicals and exert pressure
as if by a suggestion or a push.

The substrate could be thought of as a medium for “smells” that would influence the activities of the epi-
modules. So, performance monitoring of a component could exude a hotspot smell, which when sensed by other
epimodules would cause a migration of a set of components to a stronger cluster or a faster machine. Perhaps it
would be useful for the substrate to have a geometry so that concepts of distance and expanding signals could
be used to model accumulating evidence or to disregard irrelevant, anomalous spikes.

At this end of the spectrum, concepts like population and crossbreeding could make sense so that the epi-
modules could learn or evolve to be more effective. Perhaps epimodules would live from nourishment provided
by a healthy system and its components. Perhaps epimodules would effect the initial installation using surro-
gates to optimize placement and connectivity, the real installation taking place after some initial experimenta-
tion—or perhaps the surrogates would assemble components or grow them from found / sought parts and piec-
es in a sort of in-place development / growth process.

The autopoietic part of the system to be subject to digital evolution—either in real time along with the al-
lopoietic part of the system or on simulations that permit faster evolution.

h h h

But this leaves out what to many people is the most important part of design—design is about beauty. This
aspect has not as much to do with problem solving and engineering, though many designs-as-beauty have or
require such things. For many people, when they talk about a “good design,” they are talking about something
that is pleasing about it—what makes Apple products well designed and Dell products utilitarian (designed well
for the job they need to do, but nothing to gaze upon lovingly). One could debate the extent to which beauty re-
quires subjectivity, but that’s the topic of a different talk.

Looking at this through the lens of biological systems—prompted by our exploration of digital evolution—
the concept of canalization seems relevant. This concept is about the course of a developmental process: such
a process is or becomes canalized if or when it reaches a
state where the outcome is determined regardless of fluc-
tuations in the remainder of the process, including the
environment in which the process takes place. The word
comes from “canal,” and canalization roughly means
that once you end up in one of the tributaries to a river,
you end up in the river. It’s an inevitable outcome.

Metadesign spaces 1 and 2 (design up front and in-
cremental design / complex adaptive system-based de-
sign) are different from metadesign space 3 (evolution),
possibly, because the first 2 are done (mostly) by people,
and therefore a sort of canalization takes place based
on our humanity. Namely, human designs are all cana-
lized by beauty, elegance, modularity, understandability,

32

maintainability, and mathematics. Try as we might, we cannot explore all of the design space, because the parts
of it that contain designs without those characteristics are impossible for us to see. The design of the tone dis-
criminator we looked at is not comprehensible at all. When people are asked to design a tone discriminator us-
ing a 10x10 portion of the FPGA, they cannot do it as compactly as the design we looked at.

This means there is a blind spot in our design visions. There are things we cannot see.

h h h

Do we understand design better now? I looked at some extreme situations, as many philosophers do to try to
understand something. In this inquiry I’ve aimed high, not to get you to accept my ideas, but to get you to make

your own, better ones.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

