
AI: Winter of Our Discontent

Richard P. Gabriel

November 18, 2024

1

(SWITCH to slide 2)
Every time you hear or read a story, you should ask how reliable the teller is. I am going to tell you how

AI unfolded as I observed it. I am first and foremost an AI person. In this talk I’ll weave in my story as it
relates to AI. Figure out whether you trust me as teller.

The slides contain more material than I will talk about. Sometimes you’ll see text in red; that’s the only
text you might want to look at during the talk. You have the slides, so read them at your leisure. After this
talk, I’ll give you the transcript.
(SWITCH to slide 3)

I was born in Haverhill but grew up on a farm in Merrimac. Pentucket at that time was one of the worst
high schools in the country, rivaling those in Mississippi.

The next part is a long story; it started in Autumn 1966 and continued through Spring 1967. What I did,
the consequences, and how I reacted and eventually recovered set the stage for the rest of my career and
personality. It forms the basis of how you should judge my version of AI history.

In Senior year we had to write a term paper—jointly supervised and graded by the Contemporary
Civilization teacher and the English teacher. I chose for my topic the megalopolis, the giant city.

Through the fall I worked on it. In November I was accepted at Northeastern as part of its early
acceptance program—back then they took everyone. I had also applied to Harvard and MIT.

In early December I got what I thought was great news. A Harvard committee to assess students’
scholarship potential sent someone to visit me and my family.

Feelingmy oats, I decided to indulgemy urge to write and planned to write a preface to the term paper to
make concrete the abstract things my paper said about the megalopolis. I asked the teachers for permission
and they said “no,” but I could write a one sentence dedication.

So, I wrote a 3,000-word, one-sentence dedication, addressed to a typical resident of the megalopolis:
battered by shallow culture, poor jobs, fast pace, and low reward, someone whose life is barely worth
living and whose creative and living juices are throttled by the routine of surviving in a place crowded
to near-death—he is a man unfortunately trapped by the horrors of contemporary civilization and made
less a man, less a person by his circumstances.

I turned it in early.
The English teacher gave me an A+++++++: “A” followed by seven pluses. The Contemporary

Civilization teacher gave me an F, averaging to C−.
Joe Sherry didn’t stop there.
He wrote a letter to the Harvard admissions committee, writing that I had neither ethics normorals, that

he and other teachers suspected I had cheated in school—that my destructive attitude would damage my
likelihood of success at Harvard and hurt other students.

Harvard did not accept me, and neither did MIT.
Iwent on strike and failed each course that semester. This rebellious streak thereafter definedmypersonality

and approach to life—I became a cynical and caustic critic, and whatever was expected, I did the opposite.
As Feyerabend said: “Anything Goes.”
(SWITCH to slide 4)

We got better reviews.
(SWITCH to slide 5)

By the time I graduated from Northeastern I was a so-so mathematician, an OK Fortran and assembly
language programmer, and I had no clear idea about the rest of my life except that I wanted to try for grad
school. I applied to the usual places for someone who thinks he has half a chance—MIT, Harvard, Berkeley,
Wisconsin, and Minnesota. I wrote away for the Oxford application. All of these were in the top 20 in
mathematics back then, and predictably, I was rejected by MIT, Harvard, and Berkeley.

I studied the application for Oxford for a day or two, but I couldn’t figure out how to fill it out. Effective
filter, I guess.

2

Wisconsin and Minnesota took me and offered teaching fellowships, but I had a girlfriend for the first
time, and she was going to school in Boston, so I had to figure a way to stick around.
(PAUSE)

Harriet Fell joinedNortheastern fromMIT; she askedwhat interestedme andmy inept answer prompted
her to say ah, you’re into artificial intelligence; you should talk to my friend Pat Winston who directs the MIT
AI Lab, and I did and he let me sit in an office at the Lab for a year and when the first AI Winter hit, he said
you should talk to Dave Waltz who just graduated and has taken a job at the University of Illinois and maybe
you can go with him, and I did talk to him and Dave said let’s go to Illinois and build an AI lab. And that’s
what we did—or tried to do.
(SWITCH to slide 6)

The well-known “Lighthill Report” triggered the first major AI Winter in the early 1970s. Though
a British report, it had an effect on DARPA and then on me. Lighthill wrote “In no part of the field have the
discoveries made so far produced the major impact that was then promised.”

What is anAIWinter? Funding forAI research and development dries up, though usually not completely.
AI companies—if any there be—do worse or go out of business. News outlets, social media, and the public
generally are down on AI. University research funding drops but doesn’t go away: funders tend to be fans
of particular researchers, like McCarthy and Minsky.

New projects arise and new people join, and eventually new “breakthroughs” restore AI’s luster: A New
Spring.
(SWITCH to slide 7)

Lighthill blamed AI researchers for failing to address combinatorial explosion—small problems might
be solved but real-world-size ones wouldn’t be. Back in 1972, PDP-10s were the computer of choice for
AI labs. A large configuration had a 9 megahertz clock and 256 kilowords of 36-bit word-based memory,
which translates to one megabyte.

Why “computer of choice”? Most AI researchers used Lisp, and a PDP-10 address was 18 bits, which
meant a Lisp CONS cell could be stored in a single word. Moreover, there were machine instructions to
manipulate these half-words, so in a sense, a PDP-10 was a Lisp machine—by design.

My computer at home today is ten thousand times faster and almost two hundred thousand times
bigger . . . and not shared with others.

Naturally, we all knew back then we needed way bigger and much more powerful computers for “real
AI.” Likewise, we knew that only “toy” problems were accessible.
(SWITCH to slide 8)

Lighthill broke AI into three categories. Category A was “Advanced Automation,” which addresses tasks
where machines could replace people; his examples included OCR and pattern recognition.
(SWITCH to slide 9)

Category C concerns using computers to help come up with theories to interpret neurobiological data
about specific areas of the central nervous system, using computer-based models of neural nets to test out
particular hypotheses.
(SWITCH to slide 10)

Category B is Building Robots, that is, building devices that mimic a certain range of human functions.
As of 2024, the three categories have blended, in large part because computer power has expanded the size
and range of problems that can be addressed.
(SWITCH to slide 11)

Two other important critiques of strong AI came out, one in 1972 and the other in 1980, but I won’t talk
in detail about them. They spurred quite a kerfuffle.

Dreyfus argued that human intelligence and expertise depend on unconscious processes rather than
conscious symbolic manipulation, and that these unconscious skills can never be fully captured in formal
rules.

3

Searle argued that if understanding or intentionality cannot be ascribed to a machine, then it is not
thinking; it does not possess a mind in any ordinary sense of the word.
(SWITCH to slide 12)

Where did this criticism come from? Why such a strong impact?
AI might as well have a “kick me” sign on its back. Unlike many “problems” computer scientists and

programmers address, AI has an easy-to-understand goal, and the nature of success is vague—as vague as
anything people try to do: as vague as success in painting, fiction writing, sculpture, music composition,
and poetry.

Write a program that does things that usually only a person can do. Play a game, read a handwritten
note, prove a theorem, write a program, transcribe a lecture, compose a sonnet, translate Madame Bovary
to Pit-jant-jat-jara, drive a car through the Mojave from Barstow to Primm, tell cats and croissants apart.

What game, and how well can the computer play? How long a note? How hard a theorem? Reminds me
of Samuel Johnson’s remark, which I’ll revise: “Sir, a program writing a sonnet is like a dog walking on his
hind legs. It is not done well; but you are surprised to find it done at all.”

Back to the beginning.
(SWITCH to slide 13)

AI started in Summer 1956 at Dartmouth College, at a two-month study proposed by John McCarthy,
Marvin Minsky, Nathaniel Rochester, and Claude Shannon. Allen Newell and Herb Simon would make an
appearance. Thegroupwas optimistic aboutwhat it could accomplish andhowquickly: “problems . . . reserved
for humans” and “improve themselves,” and a “significant advance”—over two months in Summer.
(SWITCH to slide 14)

In 1955, there were roughly no programming languages higher level than machine language and some
simple, so-called “autocode” languages, which were pretty much assembly languages.

Even though themachineswere computationally tiny, themain problemwas seen as an “inability towrite
programs” that could exploit them. Human thought consisted of manipulating words using reasoning and
rules of conjecture.
(SWITCH to slide 15)

We can see the origins of several AI threads in vogue today: neural nets and using randomness including
Monte-Carlo methods. They were considering self-improvement, creative thinking, educated guesses, and
hunches.
(SWITCH to slide 16)

Take a look at some of the words threading through the proposal.

imaginative, invention, discovery, uncertainty, failure, slightly wrong, unreasonable, unexpected,
rough guess, originality, self-reference, learning

Even today, many would have trouble reckoning how to approach some of these.
Newell and Simon set the stage for years of research: because we don’t even know what questions to ask,

we shouldn’t go for theories first but instead build actual programs to understand and study.
(SWITCH to slide 17)

Some of you are too young to appreciate or even know how primitive computer science was in the early
1970s. Don Knuth published the first three volumes of “The Art of Computer Programming” in 1968, 1969,
and 1973. There were few if any undergraduate degree programs in Computer Science.
(SWITCH to slide 18)

Given the vague goal statements McCarthy and his crew put together, progress seemed pretty good.
Glance at this transcript of Joseph Weizenbaum’s Eliza program in 1967, whose most famous persona was
a Rogerian psychologist.
(SWITCH to slide 19)

4

Now look at Ken Colby’s Parry program chatting with Eliza. Parry had a much more sophisticated
language understanding model; Parry was designed to mimic a paranoid schizophrenic. In lots of ways,
Parry was a serious attempt at AI while Eliza wasn’t. Take a look at this exchange and see how Parry is the
better program.

A group of experienced psychiatrists analyzed real patients and computers running Parry. When asked
which were human and which were computer programs, they were correct only 51% of the time—a figure
consistent with random guessing.
(SWITCH to slide 20)

Terry Winograd at MIT made the most notable advance in the early 1970s with SHRDLU, a program
that used a simulated blocks world as a platform for a person to interact with a “robot” in English. This is
a transcript. The person would see a display of the blocks and the actions of the robot. SHRDLU seems to
“understand” what’s going on and seems able to reason about the blocks world.

Winograd produced two programming systems to implement SHRDLU:Microplanner is a backtracking
theorem prover, used for reasoning and planning; Programmar is for natural language understanding.
(SWITCH to slide 21)

As remarked by Newell and Simon, most of these achievements are based on guessing how to tackle the
underlying “problem.” Many researchers at the time lamented the lack of computer power, which forced
them to use “toy” examples, and so the idea that perhaps their guesses were off base wasn’t top of mind.

We—because I was in the AI crowd—were doing our best to dope out how to approach programming
such ill-defined behavior.

On top of that, the notion of mimicking human mental capabilities is an easy one to grasp—more so
than, for example, appreciating the difficulties of tacklingNP-complete problems, such as satisfiability—and
judging success seemed to be a matter of “knowing it when I see it.” And seeing just a little of it made it easy
to believe there was more lurking just out of sight.

CEOs and the military liked the idea of cheaper, more effective, and more compliant, nonhuman actors.
Not surprising that there was an AI Winter.

(SWITCH to slide 22)
Trying to start an AI Lab at the University of Illinois was not easy. To establish an AI degree program

required passing a bill in the Illinois Legislature. For me this meant that getting a doctorate there was going
to be tricky. I was in the Math department, and their plan was dramatic: Take and pass all the tests required
for a Math PhD. Do research and write a dissertation in AI that satisfied both Dave Waltz and the Math
department; and because they were unsure about both AI and Dave, the dissertation had to satisfy two
other folks: Marvin Minsky and Seymour Papert at the MIT AI Lab.

Urk.
Dave Waltz was a favorite son in the EE department, and they had a plan: I’d take but fail all the

required EE tests, and using a quirk in protocol, Dave and the EEChair would declare that I had passed; then
I’d do AI research and a dissertation that satisfied Dave Waltz. But I was still too starry-eyed to overlook
the fraud.

I decided to move on. I applied to MIT (again) and Stanford—the two best AI Labs. Dave Waltz called
in a favor with someone at SAIL—the Stanford AI Lab—and I was whiteballed into the CS Department. A
“whiteball” is the opposite of a “blackball.” I was put on the MIT waiting list. Don Knuth called to invite me
to join him at Stanford. Who could say “no.”

I talked McCarthy into my joining the Stanford AI Lab in exchange for TAing his Lisp course. He was
the worst teacher you can imagine and just as bad at programming Lisp. I decided that despite McCarthy
being at SAIL, they had a subpar Lisp, so I portedMIT’sMacLisp to their PDP-10 and became the Lab’s Lisp
wizard. I wrote lots of libraries and two Lisp programming environments. For my wife’s master’s thesis I
wrote a gait diagnosis program using expert system ideas.

I didn’t knowmuch about computer science, so another student inmy incoming class dumped a trunkload
of papers and books at my house and said “read these and you’ll know computer science.” None of the

5

18 people admitted to the CS department that year had an undergraduate computer science degree. I took
four CS courses and the rest were “Reading and Research” and “Advanced Volleyball.” (Look up “Gabriel”
in the Hacker’s Dictionary.)

Terry Winograd became my adviser and I joined an Automatic Programming project to do their natural
language generation stuff. The night before my oral exam, Terry called up and told me he planned to vote
“no.” Not great news. But another student inmy incoming class had helpedme preparemy talk to an absurd
level (something like 80 practice runs), so I passed without any grilling by the committee. He was also the
bass player in my rock ’n’ roll band.

My thesis system was called “Yakety Hacks,” but I’ve never revealed that before today. By the way,
I designed and implemented a programming language to write it in along with a soft-description language.

I did a lot of Lisp hacking and became known for it.
(SWITCH to slide 23)

After graduating, McCarthy read my dissertation; despite declaring “it’s not very good,” he hired me to
work on his revived Advice Taker project, where the basis of research was this statement, “in order for a
program to be capable of learning something it must first be capable of being told it.”

The approachwas to represent propositions in a formal, mathematical language; and the interesting “toy”
problems, as it were, require non-monotonic reasoning, the fact that themere addition of new premises can
invalidate a previously reached conclusion—something that cannot happen in purely deductive reasoning.
Something like this:

All Birds can fly.
Canaries are birds.
Penguins are birds.
Slick is a bird.
Can Slick fly? Yes.
Penguins cannot fly.
Slick is a penguin.
Can Slick fly? No.

McCarthy wanted us to use circumscription, his invention. We used a Neo-Fregean approach.

Around then the MacLisp community was split and drifting apart, and DARPA wanted to fund only
one Lisp effort for their AI research, so I gathered the community, forged—or forced—compromises, and
Common Lisp was born.

After Common Lisp was designed, I started a Lisp company to implement it on stock hardware. It was
a “private label” or “OEM” company. We provided Common Lisp to every workstation and mainframe
company except Tektronix, and every AI company used our Lisp.

In 1988, the second major AI Winter hit.
(SWITCH to slide 24)

In the US, work on expert systems, simple planning, and logic-based reasoning overflowed into the
business world, especially whenAI researchers suddenly realized a lot ofmoney could bemade. The success
of MYCIN spawned a raft of companies, mostly in California.

The Japanese government launched a ten-year project to create amachine that could perform somewhere
between 100 million and 1 billion “logical inferences per second,” a measurement they referred to as “LIPS.”

MYCIN used an inference engine and rules written like this one, which can be read thus:
“if the gram stain of the organism is gramnegative, and the morphology of the organism is rod shaped,

and the aerobicity of the organism is anaerobic, then there is suggestive evidence (at the .6 level) that the
identity of the organism is bacteroides (back-ter-óy-deez)”

6

(SWITCH to slide 25)
Here is a rule from my Gait Diagnosis program.
Two things to notice: the rules go from observations to diagnoses (usually) and the force of the inference

is a number. Critics of expert systems back then remarked that expert systems required you to program
with floating point numbers (certainty factors)—adjusting them until you got the right answers. Perhaps
someone should tell that to NVIDIA.

A certainty factor is a measure of how certain the system is of a statement; they range from−1 (certainly
false) to 1 (certainly true). There is a calculus of combining them.
(SWITCH to slide 26) (Bucks Cap)

When I startedmy Common Lisp company in 1984, like the AI company founders, I needed to convince
venture capitalists to give me money—a lot of money. To get a lot of money without giving up most of your
company, you needed to promise to make the venture capitalists a lot of money, redeemed at IPO. I recall
working with my primary co-founder to come up with the most outrageous predictions of market sizes that
didn’t revolt us as scientists. You might say that we “boasted of a bright future.”

Naturally wewere confident in our ability to create a good Lisp implementation onwhatwas called “stock
hardware,” but we depended on the hardware companies to make capable hardware and the AI companies
to lure in customers.

And therein lies the rub.
(SWITCH to slide 27)

AI systems are large and complex; many were developed on Lisp machines, such as the Symbolics 3600,
the LMI CADR, and the Xerox Dorado. These machines were designed and built by Lisp-knowledgeable
people, so the special performance needs of Lispwere handled by hardware. Thesemachineswere expensive.
Could Sun Workstations, for example, keep up?
(SWITCH to slide 28)

DaveMoon—arguably the best programmer alive in the 1980s—remarked that AI represented “complex,
ambitious applications that go beyond what has been done before.” And what expectations did the
AI companies hint at? Many potential customers had cadres of aging, knowledgeable experts at the hearts
of their companies, and these companies heard that expert systems could replace those experts as they
retired—or were fired. The expectation was human-level performance for specialized, cognitive tasks.
(SWITCH to slide 29)

The Lisp machines were indeed powerful and easy to program with—for Lisp people, and, I found out,
for those with expansive minds. My company was full of mathematicians and musicians, and even those
with no Lisp background learned quickly how to “hack Lisp real good,” as Rod Brooks once said. This was
the early to mid 1980s.
(SWITCH to slide 30)

Hype, we know now, derives in part from an “echo chamber,” in which the same kinds of statements are
repeated over and over. AI fundamentally draws people to overstate goals and performance, but along with
that, many AI companies were led or directed by enthusiastic researchers who loved their own cooking and
liked the idea of a big house on top of a South Bay hill with a view of Stanford.
(SWITCH to slide 31)

How lame were the people running AI companies?
Around 1987 I met with Tom Kehler, the CEO of IntelliCorp, to talk about my company helping his by

tailoring and tuning our Common Lisp so that their products could work better for our shared customers.
He flatly refused; he said thatmy Lisp company had only one upward path, which was to provide AI systems
in competition with Intellicorp, and that capitalism was based on non-cooperation.

By the way, this was when Lucid, my company, was subleasing our offices from Intellicorp, a deal made
because of the confluence of our business interests.

7

(SWITCH to slide 32)
Blame.
As SupremeCourt Justices andunder-motivated childrenprove, dogs andwives are to blame. TheAI companies

blamed Lisp for their failures. By 1987 there were plenty of competent Lisp implementations created by a
variety of good companies and backed by strong hardware companies.
(SWITCH to slide 33)

AI from the 1950s through the 1980s concerned figuring out how to write programs people had no idea
how to write to accomplish the vaguest of absurdly impossible goals. As McCarthy said, the problem was
“our inability to write programs.”

AI was about programming.
Here is some programming stuff invented to cope with AI.

(SWITCH to slide 34)
Let’s imagine. The 1950s, ’60s, & ’70s: you want to write a program that performs something intelligent

a human could do. You aren’t sure how to approach it, but you have some ideas. The computers you
can access might have a megabyte of memory and perhaps 30 megabytes of disk space. They can execute
a million instructions per second. Your choice of programming language is roughly these: assembly
language, Fortran, Lisp, and Cobol. There are no libraries able to help; there are hardly any libraries at all.

This is how things were until themid-1970s. Any sort of help a programming system could provide came
from something you created. In short, you or your colleagues needed to create the programming languages
and surrounding infrastructure yourselves.
(SWITCH to slide 35)

When your goals are correctness and performance, you invent type systems, better compilers, and
modularity, and you promote formal reasoning. When your goal is figuring out how to program something
that many believe cannot be programmed, you invent mechanisms of expressiveness.

Gaze upon some.
(PAUSE)

(SWITCH to slide 36)

(PAUSE)

(SWITCH to slide 37)

(PAUSE)

(SWITCH to slide 38)
ThisAIWinter was a disaster for computer science. To see this wemust explore the idea of Programming

Systems.
A programming system is a platform comprising execution hardware at the lowest level up through

the interfaces to the outside world and to the programmer or user. It’s a bottom-to-top-to-bottom system
that supports programmers building up a system starting with an already fledged and running system that
supports reflection and self-modification; it is in short a live system.
(SWITCH to slide 39)

Lisp machines, Smalltalk, and roughly every Lisp implementation exemplify programming systems.
A programming system is not “just a language and an operating system.”
(SWITCH to slide 40)

Work on and with programming systems produced several important ideas, methodologies, and
now-common technologies.
(SWITCH to slide 41)

Some of them might strike you as unexpected, surprising even.

8

(PAUSE)

(SWITCH to slide 42)
My Lisp company and I noticed right away the business consequences of this AI Winter.
After I finished my poetry MFA in 1998, I saw that my research areas had been deleted by the Academy.

And only in 2012 did I notice the demise of an entire way of thinking about programming and even
computing.
(PAUSE)

(SWITCH to slide 43)
In the late 1980s I realized that I had neglected my passion for writing; in 1993 I attended three writers’

workshops and found out that actual poets thought I might be not bad. My computer science career became
only a means to support my writing, something all my employers eventually noticed.

In 1995 I started at an MFA program, graduating in 1998. I intended to resume my research career, but
therewas no interest in thework Iwanted to do norwere there any places to publish. I became a journeyman
“helper,” helping Sun with some projects including transitioning to an open-source company, working with
marketing, and acting as a trophy to display corporate health to the outside world.

I resented having no place to publish, so I helped design the Patterns conferences (the PLoPs), started
Onward!, expanded it to include Essays, started the transition of OOPSLA to Splash, and helped design the
Art, Science, and Engineering of Programming—all to create publication venues I could inhabit. Along the
way I became expert in the work of Christopher Alexander.

I wrote a couple of books, ran a couple of interesting conferences, and gave a handful of interesting talks.

Around 2013 I happened upon a research project that combined my interest in writing & creativity with
my knowledge of AI: InkWell. We can ignore its origin story and focus on what I made it: an exploration
of how creative writers—especially poets—think about and go about revision. Poetic revision goes way
beyond conveying facts, meaning, and information; it’s about connotations, sound, rhythm, lyricism,mood,
attitude, voice, and subtext.
(SWITCH to slide 44)

In 1948, Alan Turing described how intelligent machines could come about. The machine—software
mostly—would need both discipline and initiative. Discipline comes from programming, which I take
(today) to mean the symbolic AI stuff: reasoning and actual thinking.

Initiative might come from programming, but Turing hinted that one could start with an unorganized
machine—a neural net, perhaps—and teach it discipline and initiative.
(SWITCH to slide 45)

Most AI work until the 1990s was symbolic AI, or programming. Since thenmachine learning has taken
over—at least that’s what the press, public, and Wall Street believe.
(SWITCH to slide 46)

These days we’re impressed by ChatGPT and other Large Language Model-based systems. They can
answer questions, write short essays and articles, and even write some programs with aplomb. We are
so impressed by these abilities we are beginning to worry about our place on the intelligence spectrum.
But long before these generative feats, computers using non-symbolic techniques could do some amazing
things—and in many ways, these things could be called superhuman.
(SWITCH to slide 47)

We’ll start with genetic algorithms. The idea is simple: simulate natural evolution with mechanisms for
breeding, mutation, crossover, and selection. I use genetic algorithms for some things in InkWell.

9

If you’re worried now about generative AI, you should have panicked in 1997 when Adrian Thompson’s
group did an experiment to evolve an FPGA to distinguish between two signals:
(SWITCH to slide 48)

a 1k square wave and a 10k square wave. They used a 10x10 section of a field programmable gate array,
but without a clock. The FPGA was inside a Faraday cage because they had discovered that the genetic
algorithm liked to design a radio in the FPGA to pick up the controlling computer’s clock!
(SWITCH to slide 49)

Here’s a diagram of the essential part of the evolved cell topology. Without a clock, it’s an analog circuit.
It worked very well.

Thompson and his colleagues tried to figure out how it worked. Best I know, they never did.
(SWITCH to slide 50)

Here are some strange things about the circuit. The training / evolution process used an actual FPGA;
when a different physical part is substituted for the one trained on, the circuit doesn’t work well. If you
make the circuit in the diagram with CMOS, it doesn’t work. If you simulate the circuit with one of the
commercial simulators, it does nothing.

The function units of the red cells are not used by the circuit, but when those units are clamped—their
function units set to return a constant 0—the circuit doesn’t work. Ignore the upper lefthand cell in the
diagram: The remaining red cells are used only as routers—that is, they are essentially wires in the circuit.
That upper lefthand red cell, though, is particularly interesting: It is not directly connected to the active
part of the circuit at all. Yet if its output is clamped, the overall circuit doesn’t function.
(SWITCH to slide 51)

The most intriguing behavior is how the circuit gets the answer. The right answer is gotten 200ns
after the trailing edge of the first high waveform, which means that whatever interesting that’s happening
is happening when that waveform is high. But, as far as anyone can tell, absolutely nothing is happening in
the circuit at that time.

When the input goes high, the feedback loops in parts A and B are cut, and therefore those parts of the
circuit revert to digital logic and become static. Part C is observed to be static.
(SWITCH to slide 52)

When the input is high, the power levels are quiescent, there is no activity in the feedback loops, there
are no short pulses or glitches anywhere, there is no thermal activity, there is no RF activity nor response
to RF. In short, no observation shows anything happening at all.
(SWITCH to slide 53)

Once the pulse falls, Part A starts to ring, with different frequencies depending on the length of the pulse.
Parts B & C then turn that into the final output.

In 1999, in a paper in CACM, Adrian Thompson described these observations like this: “This is
astonishing,” “This is hard to believe,” “ . . . somehow, within 200ns of the end of the pulse, the circuit
‘knows’ how long it was, despite being completely inactive during it,” “We still do not understand fully
how it works, . . . ” and “Artificial evolution can produce bizarre circuits that work—but do we need to
understand them?”
(SWITCH to slide 54)

Genetic algorithms and neural nets—they meet in neuroevolution.
Neuroevolution evolves the topology of the neural network along with the weights associated with the

connections and the rules that govern how the weights change over time.
(SWITCH to slide 55)

A tough pole balancing task is to balance two poles attached to a cart by moving the cart to keep the
poles from falling—given only the cart position and pole angles.
(SWITCH to slide 56)

10

This clever solutionworks by using the recurrent connection of the single hiddennode to itself to compute
the derivative of the difference in pole angles, thereby figuring out whether the poles are falling away or
toward each other. Without evolving structure, it would be difficult to discover such subtle and compact
solutions. Starting minimally makes discovering such compact solutions more likely.
(SWITCH to slide 57)

Kenneth Stanley and his colleagues explored an evolutionary technique based purely on “search for
behavioral novelty.” The idea is to ignore objective-based fitness functions and use only a measure of
novelty—an individual is favored when it is different from previously evolved individuals. This enforces
an increase in complexity, which is a key issue in evolutionary theory.

Novelty search can solve several so-called “deceptive” tasks, such as difficult mazes. That is, evolve
a neural net that is able to traverse a tough maze. Another experiment involved creating a biped that
could travel the greatest possible distance from the starting location. Novelty search consistently performed
better than pure objective-based searches, primarily because the novelty searches routinely discovered hip
rotation.

Simulated annealing works well because it exploits a kind of novelty seeking search.
When Inkwell was instructed to write a series of short poems based on the same prompt, it eventually

came up with the doozy you see here.
(SWITCH to slide 58)

Machines and computers can perform many tasks typically associated with people much better than
people can. The human record for solving Rubik’s cube is 3.13 seconds, set by Max Park in 2023. The robot
record is .305 seconds, set this year by a Mitsubishi Electric robot. Both the mental aspect and actually
twirling the cube. If we were to adopt the fear-mongers’ pessimism, there would be no reason for a person
to ever play with a Rubik’s Cube—the same way that nowadays no one plays chess or Go, no one runs races,
and Jeopardy! is off the air.
(SWITCH to slide 59)

On to ChatGPT and generative AI. I am not going to explain in detail how those systems work, except
to point out that they are more sophisticated than many skeptics give them credit for; but I will say that
when it comes to writing, their capabilities fall very short of what even modest but talented human writers
can do.

Their success depends on a few things: first is astonishingly large training texts; the second is a
deceptively clever representation of word meanings; and the third is a transformer-style generation
mechanism based on a complex attention mechanism.
(SWITCH to slide 60)

Word2vec is a vector-based representation of wordmeanings, learned neural-net-style by optimizing the
prediction ofwords in amovingwindowof text. Basically, themeaning of aword is reckoned from thewords
that it appears near in real texts. The vector has no inherentmeaning—its elements aren’t, for example, other
words—the idea is to locate words in a sufficiently high-dimensional space so that “being near each other”
implies semantic closeness, and direction implies semantic category, more or less. Dimensions I’ve seen
range from 100 to over 12,000.
(SWITCH to slide 61)

For example, let’s compute the offset vector that joins the point representing “man” to the point
representing “woman”; thenwe’ll locate a point that is that same offset from “father” and show the ten closest
words to that. Not bad.
(SWITCH to slide 62)

Oops. Doesn’t always work well.
(SWITCH to slide 63)

Very roughly and a bit inaccurately, a transformer takes as input a series of words or sentences, encodes
the words with something like word2vec and positional information, and using a bunch of attention layers

11

to figure out the ways various words relate to each other, spits out a series of words or sentences that are a
response to the input. This response is based on predicting the next word in each sentence using meaning
gleaned from the input and the sentences up to that point. The whole shebang relies on a word2vec-like
representation ofmeaning because the next word prediction relies on shifting possible choices around based
on multi-headed attention—shifting kind of like the man-woman shifts we just saw.

But note that the examples I showed used word2vec representations of size only 300, which is not great.
ChatGPT uses a more elaborate and much larger multi-dimensional representation sort of like word2vec.
Larger—like 12,288 instead of 300.

There are a raft of neural nets used in the transformer, and a pile of matrix multiplications. A big raft
and a huge pile.
(SWITCH to slide 64)

I’m not a good enough programmer to judge how well ChatGPT programs—plus, I can program only
in Lisp. But I asked ChatGPT to explain this function.

Wow: it figured it out. ChatGPT must be really, really good at staring at code and doping it out. This is
better than many programmers I know can do.

But wait
(SWITCH to slide 65)

I took that function and changed the variable names to gensyms—what theorists call “alpha conversion.”
I started a fresh chat; ChatGPT was stumped. It seems to use a combination of surface-y reading of the
source and staring at variable names to figure out the code.

On the other hand, this is just what many programmers I know actually do.
(SWITCH to slide 66)

Getting back to writing—which I’m better at—I asked ChatGPT to write a short poem responding to
these words: loud guitar bluesmusic. This task was posed to InkWell in 2015 bymy now-deceased colleague
and bass player, Ron Goldman (hey man!).

The three ChatGPT ones are simply not very good, though one could forgive them were they written by
high school students. I believe this becomes apparent when you compare it to the one InkWell wrote.

A writer colleague said of the third one:

There’s a lot of cliché in the poem. The material is precious. There’s no sense of a concrete
experience. Though the lines strive for metaphor they fall short of finding anything fresh or specific.
The excessive anthropomorphizing is a problem, too.

(SWITCH to slide 67)
Nickieben Bourbaki is a pseudonym I used in the late 1980s, most notably in a series of debates between

Nickieben andme in twodifferent techmagazines on the topic ofWorse Is Better—I for, he against. Different
LLMs do better or worse on this depending on whether they were trained on my website.

Quite inventive.
(SWITCH to slide 68)

Then I asked ChatGPT to revise a first draft of a poem into prose, using its own voice and making it
more interesting. The original poem is mediocre but not incompetent.

That writer colleague said of it:

The piece starts with cliché and generalized description and moves toward anthropomorphizing
the city but not in any fresh and original way There’s no real attitude or tone beyond a general
one. We get some specific description. I’d say “dust-covered crosses” is the strongest, but the writer
can’t leave well enough alone and goes too far editorializing about what those crosses mean. The
detail is already significant without having to explain. . . . We are told there’s a subtle humor but
the piece offers no sense of it, no experience of it.

12

By the way, I used the expensive version of ChatGPT. . . .
(SWITCH to slide 69)

. . . perhaps we can reason about its behavior.
(PAUSE)

(SWITCH to slide 70)
People fear LLMs will replace humanwriters. In fact, LLMs are decently competent casual writers—they

will not replace, for example, CormacMcCarthy. I believeAIwill eventually produce interesting individuals,
but LLMs are not that.

One of my goals with InkWell was to see how far a program with only language knowledge could go
toward thinking like a writer. LLMs share this language-centric focus. But LLMs are built to explain using
only what they were trained on, what people tell them using prompts, and what a clever algorithm supplies
as direction. Because of these limitations, an LLM cannot be an individual.

While we’re at it, perhaps we need to rethink the Turing test: Does it show that machines are human or
that humans are not so extraordinary?
(SWITCH to slide 71)

Real writing is about revision. I own and have read a dozen books teaching revision. I’d say LLMs are
good at writing first drafts at the high-school term paper level.

LLMs are good at explaining facts, but they don’t seem to do well with words, their noise, their rhythms,
connotations, loveliness, cultural nuance, point of view, voice—things I worked on with InkWell. The poet
Brenda Hillman told me: when in doubt make it strange.
(SWITCH to slide 72)

I had a weird thought: is the reason LLMs seem so good also why they are not very human?
A person cannot know everything, but has mechanisms for discovery and handling novel situations.

LLMs don’t seem to have those, quite. The only experiences they have are those that have been written
down, acquired during training or in prompts.

An LLM has been trained in every point of view, so cannot have its own.
Perhaps if an LLM were more limited—more ignorant and more illiterate—it could be a better writer, or

more like a person. Perhaps it could learn to forget.
(SWITCH to slide 73)

Robert Boswell—a good writer and great writing teacher—talks about an approach to fiction that nearly
all creative writers know: a form of contemplation, a complex and incongruous way of thinking, working
in half-knowledge.
(SWITCH to slide 74)

While revising, thewriter listens towhat hasmade it the page. Theuninvited is often themost interesting:
unusual landscapes and strange desires emerge when the world remains half-known.
(SWITCH to slide 75)

There can be no discovery in a world where everything is known. A crucial part of writing is remaining
in the dark.

Do I dare say it? Worse might be better.
(SWITCH to slide 76)

Any chance of another AI Winter? Dunno. Depends on which AI you mean.
Speaking only of LLMs and creating texts, the current value of ChatGPT is about the same as a decently

talented, relentless seventeen year-old good at using Google but a tad gullible. Irresistible business value,
eh?
(SWITCH to slide 77)

But there is more to it.

13

Recall the late-1980s AI Winter that was a disaster for computer science— its collateral damage was
the near-end of research on programming systems. The current mania over deep learning and LLMs is
a disaster for symbolic AI. Without symbolic AI or something like it, artificial systems would be limited
to what can be learned from large training sets. Without symbolic AI, AlphaGo wouldn’t work; ChatGPT
wouldn’t work.

Without symbolic AI you can’t create a program that tries a variety of classifiers and combines them to
reach a novel conclusion. We would be unable to tell a system—Advice-Taker style— that a certain kind
of unicorn is a white goat-like animal with a long straight horn with spiraling grooves, cloven hooves, and
sometimes a goat’s beard. Instead, we’d need to ask “where’s the training set?”

Since the 1990s some researchers have been promoting “neuro-symbolicAI,”which integrates neural and
symbolic AI architectures to address the weaknesses of each, providing an AI system capable of reasoning,
learning, and cognitive modeling. But if we are in a Symbolic-AI Winter, if funding outside deep learning
and LLMs diminishes, how long will we need to wait until the next Symbolic-AI Spring?
(SWITCH to slide 78)

Thank you, good luck, and go well.
(PAUSE)

(SWITCH to slide 79)

