Work In Progress

Back to the Future: Is Worse (Still) Better?

Richard P. Gabriel

Spring-Watching Pavillion

A gentle spring evening arrives

airily, unclouded by worldly dust.

Three times the bell tolls echoes like a wave.
We see heaven upside down in sad puddles.
Love’s vast sea cannot be emptied.

And springs of grace flow easily everywhere.
Where is nirvana?

Nirvana is here, nine times out of ten.
—from the Vietnamese of Ho Xuan Huong

Technology, art, popular media including network TV, and just about every aspect of our lives and
probably life itself follows a disappointing pattern: worse is better, the good drives out the excellent,
and the most popular is least good.

You can look at it like this, perhaps: To appeal to the majority of people, an artifact must appeal to
something that those people have in common; as we increase the set of people we consider, the less
those people have in common, and that which they do have in common becomes more base. For
example, network TV is flooded with adolescent humor, sex, and violence because these are the most
basic drives people have in common, while an interest in Vietnamese poetry—which is a very refined
poetry—is quite rare. I call this the intersection effect.

More surprising, the phenomenon of worse is better occurs at all levels of scale, so that even within a
relatively esoteric subfield like object-oriented programming and languages—a subfield of program-
ming languages within the subfield of software within the fields of computer science and computer
engineering—we see that the good drives out the excellent and worse is still better: C++ is still the
language of choice though its kissing cousin, Java, is gaining popularity. CLOS (an advanced OO
language with metaobjects and tremendous power), Smalltalk (perhaps the purest form of OO),
Eiffel (well-thought-out and elegant), and Self (simplicity embodied) all sit on the sidelines while all
the starters are C++ and Java.

We see the same thing in other languages. Common Lisp is a wonderful, dynamic language which
happens to include CLOS. It runs roughly the speed of Java or better, its runtime is smaller than Java
by alot, it has a programmatically portable executable format for code, and yet it is not only not pop-
ular, but it is not even taken seriously as a programming language by just about everyone. As we look
at Web programming where version skew is a key problem, where statically defined interfaces cannot
really work well—as common sense tells us— and where intelligent agents make a lot of sense, Lisp
is not even on the junior varsity. Never mind that Yahoo Store and parts of Orbitz are written in
Common Lisp and that NASASs Deep Space 1 space probe was written in Common Lisp.

Back to the Future: Is Worse (Still) Better? August 2, 2002 1



Work In Progress

This second example is illustrative of a devastating point: It is not simply that worse programming
languages prevail through a reduction of quality by the intersection effect, but the perpetuation of
worse programming languages, once they become popular, are argued for and acted on stridently. All
planning for running experiments and autonomously navigating the Deep Space 1 probe is done
using Common Lisp code executing on the spacecraft. It is possible for controllers to bring up a Lisp
prompt on Earth and to debug and patch running code somewhere in space. Last year, this Common
Lisp code was selected by a NASA panel for NASASs software of the year award. Despite this and
despite the fact that the software works well in space, one of the high officials at NASA blocked the
award and declared that it would not be given unless the system were re-coded in C, in which lan-
guage it would be obviously better because . .. um, because . .. ?

We have seen the same thing happen to Prolog, Smalltalk, Self, ML, and Haskell (despite the

rumors of a Microsoft Haskell environment). Speaking of Microsoft .. ..

More disappointing is witnessing this same effect at work in the patterns community. Christopher
Alexander’s ideas of patterns has as its smallest part the pattern form—the concept of patterns really
has to do with pattern languages and QWAN (the Quality Without a Name). It is not about con-
struction tricks. It is about building artifacts not only suitable for human habitation, but artifacts
that increase their human inhabitants’ feeling of life and wholeness. Alexander is all about beauty and
quality, not about how to stick things together cleverly.

Yet, the most popular form of software patterns is exemplified by those found in “Design Patterns,”
by Gamma, Helm, Johnson, and Vlissides, which contains little more than techniques for coding in
C++ constructs found in other programming languages—for example, 16 of the 23 patterns repre-
sent constructs found in the Common Lisp language. There is no pattern language involved, and
there is nothing about QWAN!. Interest in patterns is coagulating around the so-called Gang of Four
style, and it looks like things could get worse. In fact, I would say that patterns are alive and well as a
form of documentation and a quest for clever solutions to common programming problems, and pat-
tern languages, QWAN, and the quest for a better future are now on their way to the sewage treat-
ment plant—the same place they went to in the world of architecture. Down with quality, up with
clever hacks. Why worry about what makes a user interface beautiful and usable when you can won-
der how to do mapcar in C++.

How could this come to be? Are there good reasons—Ilike it is better to release something initially
that is not so good but on the right track and then let a community of inhabitants repair it using
piecemeal growth? Or maybe it’s that lower cost, otherwise less effective technologies eventually push
out overpriced and over-engineered competitors? Or is it that quality is like Vietnamese poetry and
thus rarely appreciated? Is it really the statement of the base nature of human taste?

Read the Vietnamese poem at the start of this piece; didn't you like it?

Back to the Future: Is Worse (Still) Better? August 2, 2002 2



