
Common Lisp Object System Specification

1. Programmer Interface Concepts

Authors: Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel,
Sonya E. Keene, Gregor Kiczales, and David A. Moon.

Draft Dated: June 15, 1988
All Rights Reserved

The distribution and publication of this document are not restricted. In order to
preserve the integrity of the specification, any publication or distribution must
reproduce this document in its entirety, preserve its formatting, and include this
title page.

For information about obtaining the sources for this document, send an Internet
message to common-lisp-object-system-specification-request@sail.stanford.edu.

The authors wish to thank Patrick Dussud, Kenneth Kahn, Jim Kempf,
Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L White
for their contributions to this document.

At the X3J13 meeting on June 15, 1988, the following motion was adopted:

“The X3J13 Committee hereby accepts chapters 1 and 2 of the Common Lisp
Object System, as defined in document 88-002R, for inclusion in the Common
Lisp language being specified by this committee. Subsequent changes will be
handled through the usual editorial and cleanup processes.”

Programmer Interface Concepts 1–1



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
Error Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6

Defining Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
Creating Instances of Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
Accessing Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
Inheritance of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
Inheritance of Slots and Slot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
Inheritance of Class Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12

Integrating Types and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
Determining the Class Precedence List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16

Topological Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17

Generic Functions and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
Introduction to Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
Introduction to Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
Agreement on Parameter Specializers and Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
Congruent Lambda-Lists for All Methods of a Generic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–23
Keyword Arguments in Generic Functions and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–23

Method Selection and Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
Determining the Effective Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25

Selecting the Applicable Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
Sorting the Applicable Methods by Precedence Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
Applying Method Combination to the Sorted List of Applicable Methods . . . . . . . . . . . . . . . . . . 1–26

Standard Method Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27
Declarative Method Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29
Built-in Method Combination Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29

Meta-Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31
Metaclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31
Standard Metaclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31
Standard Meta-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31

Object Creation and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33
Initialization Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
Declaring the Validity of Initialization Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
Defaulting of Initialization Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–35
Rules for Initialization Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–36
Shared-Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
Initialize-Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
Definitions of Make-Instance and Initialize-Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–39

Redefining Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41
Modifying the Structure of Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41

1–2 Common Lisp Object System Specification



Initializing Newly Added Local Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42
Customizing Class Redefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–43

Changing the Class of an Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44
Modifying the Structure of the Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44
Initializing Newly Added Local Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44
Customizing the Change of Class of an Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–45

Reinitializing an Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–46
Customizing Reinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–46

Programmer Interface Concepts 1–3



1–4 Common Lisp Object System Specification



Introduction

The Common Lisp Object System is an object-oriented extension to Common Lisp as defined
in Common Lisp: The Language, by Guy L. Steele Jr. It is based on generic functions, multiple
inheritance, declarative method combination, and a meta-object protocol.

The first two chapters of this specification present a description of the standard Programmer
Interface for the Common Lisp Object System. The first chapter contains a description of the
concepts of the Common Lisp Object System, and the second contains a description of the
functions and macros in the Common Lisp Object System Programmer Interface. The chapter
“The Common Lisp Object System Meta-Object Protocol” describes how the Common Lisp
Object System can be customized.

The fundamental objects of the Common Lisp Object System are classes, instances, generic
functions, and methods.

A class object determines the structure and behavior of a set of other objects, which are called
its instances. Every Common Lisp object is an instance of a class. The class of an object
determines the set of operations that can be performed on the object.

A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object contains a set of methods, a lambda-list, a
method combination type, and other information. The methods define the class-specific behavior
and operations of the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used in Com-
mon Lisp; in particular, a generic function can be used as an argument to funcall and apply and
can be given a global or a local name.

A method is an object that contains a method function, a sequence of parameter specializers
that specify when the given method is applicable, and a sequence of qualifiers that is used
by the method combination facility to distinguish among methods. Each required formal
parameter of each method has an associated parameter specializer, and the method will be
invoked only on arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they
are run, and the values that are returned by the generic function. The Common Lisp Object
System offers a default method combination type and provides a facility for declaring new types
of method combination.

Programmer Interface Concepts 1–5



Error Terminology

The terminology used in this document to describe erroneous situations differs from the termi-
nology used in Common Lisp: The Language, by Guy L. Steele Jr. This terminology involves
situations; a situation is the evaluation of an expression in some specific context. For example,
a situation might be the invocation of a function on arguments that fail to satisfy some specified
constraints.

In the specification of the Common Lisp Object System, the behavior of programs in all situations
is described, and the options available to the implementor are defined. No implementation is
allowed to extend the syntax or semantics of the Object System except as explicitly defined in the
Object System specification. In particular, no implementation is allowed to extend the syntax of
the Object System in such a way that ambiguity between the specified syntax of Object System
and those extensions is possible.

“When situation S occurs, an error is signaled.”

This terminology has the following meaning:

• If this situation occurs, an error will be signaled in the interpreter and in code compiled
under all compiler safety optimization levels.

• Valid programs may rely on the fact that an error will be signaled in the interpreter and in
code compiled under all compiler safety optimization levels.

• Every implementation is required to detect such an error in the interpreter and in code
compiled under all compiler safety optimization levels.

“When situation S occurs, an error should be signaled.”

This terminology has the following meaning:

• If this situation occurs, an error will be signaled at least in the interpreter and in code
compiled under the safest compiler safety optimization level.

• Valid programs may not rely on the fact that an error will be signaled.

• Every implementation is required to detect such an error at least in the interpreter and in
code compiled under the safest compiler safety optimization level.

• When an error is not signaled, the results are undefined (see below).

“When situation S occurs, the results are undefined.”

This terminology has the following meaning:

• If this situation occurs, the results are unpredictable. The results may range from harmless to
fatal.

1–6 Common Lisp Object System Specification



• Implementations are allowed to detect this situation and signal an error, but no implementa-
tion is required to detect the situation.

• No valid program may depend on the effects of this situation, and all valid programs are
required to treat the effects of this situation as unpredictable.

“When situation S occurs, the results are unspecified.”

This terminology has the following meaning:

• The effects of this situation are not specified in the Object System, but the effects are harm-
less.

• Implementations are allowed to specify the effects of this situation.

• No portable program can depend on the effects of this situation, and all portable programs
are required to treat the situation as unpredictable but harmless.

“The Common Lisp Object System may be extended to cover situation S.”

The meaning of this terminology is that an implementation is free to treat situation S in one of
three ways:

• When situation S occurs, an error is signaled at least in the interpreter and in code compiled
under the safest compiler safety optimization level.

• When situation S occurs, the results are undefined.

• When situation S occurs, the results are defined and specified.

In addition, this terminology has the following meaning:

• No portable program can depend on the effects of this situation, and all portable programs
are required to treat the situation as undefined.

“Implementations are free to extend the syntax S.”

This terminology has the following meaning:

• Implementations are allowed to define unambiguous extensions to syntax S.

• No portable program can depend on this extension, all portable programs are required to
treat the syntax as meaningless.

The Common Lisp Object System specification may disallow certain extensions while allowing
others.

Programmer Interface Concepts 1–7



Classes

A class is an object that determines the structure and behavior of a set of other objects, which
are called its instances.

A class can inherit structure and behavior from other classes. A class whose definition refers to
other classes for the purpose of inheriting from them is said to be a subclass of each of those
classes. The classes that are designated for purposes of inheritance are said to be superclasses of
the inheriting class.

A class can have a name. The function class-name takes a class object and returns its name.
The name of an anonymous class is nil. A symbol can name a class. The function find-class
takes a symbol and returns the class that the symbol names. A class has a proper name if
the name is a symbol and if the name of the class names that class. That is, a class C has the
proper name S if S = (class-name C) and C = (find-class S). Notice that it is possible for
(find-class S1) = (find-class S2) and S1 6= S2. If C = (find-class S), we say that C is the
class named S.

A class C1 is a direct superclass of a class C2 if C2 explicitly designates C1 as a superclass in
its definition. In this case C2 is a direct subclass of C1. A class Cn is a superclass of a class
C1 if there exists a series of classes C2, . . . , Cn−1 such that Ci+1 is a direct superclass of Ci for
1 ≤ i < n. In this case, C1 is a subclass of Cn. A class is considered neither a superclass nor a
subclass of itself. That is, if C1 is a superclass of C2, then C1 6= C2. The set of classes consisting
of some given class C along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is expressed as a list ordered from most specific to least
specific. The class precedence list is used in several ways. In general, more specific classes can
shadow, or override, features that would otherwise be inherited from less specific classes. The
method selection and combination process uses the class precedence list to order methods from
most specific to least specific.

When a class is defined, the order in which its direct superclasses are mentioned in the defining
form is important. Each class has a local precedence order, which is a list consisting of the
class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class in the
list. The classes in each local precedence order appear within the class precedence list in the same
order. If the local precedence orders are inconsistent with each other, no class precedence list
can be constructed, and an error is signaled. The class precedence list and its computation is
discussed in the section “Determining the Class Precedence List.”

Classes are organized into a directed acyclic graph. There are two distinguished classes, named
t and standard-object. The class named t has no superclasses. It is a superclass of every class
except itself. The class named standard-object is an instance of the class standard-class and
is a superclass of every class that is an instance of standard-class except itself.

1–8 Common Lisp Object System Specification



There is a mapping from the Common Lisp Object System class space into the Common Lisp
type space. Many of the standard Common Lisp types specified in Common Lisp: The Language
have a corresponding class that has the same name as the type. Some Common Lisp types do
not have a corresponding class. The integration of the type and class systems is discussed in the
section “Integrating Types and Classes.”

Classes are represented by objects that are themselves instances of classes. The class of the class
of an object is termed the metaclass of that object. When no misinterpretation is possible, the
term metaclass will be used to refer to a class that has instances that are themselves classes.
The metaclass determines the form of inheritance used by the classes that are its instances and
the representation of the instances of those classes. The Common Lisp Object System provides
a default metaclass, standard-class, that is appropriate for most programs. The meta-object
protocol provides mechanisms for defining and using new metaclasses.

Except where otherwise specified, all classes mentioned in this chapter are instances of the class
standard-class, all generic functions are instances of the class standard-generic-function, and
all methods are instances of the class standard-method.

Defining Classes
The macro defclass is used to define a new named class. The syntax for defclass is given in
Figure 2-1.

The definition of a class includes:

• The name of the new class. For newly defined classes this name is a proper name.

• The list of the direct superclasses of the new class.

• A set of slot specifiers. Each slot specifier includes the name of the slot and zero or more
slot options. A slot option pertains only to a single slot. If a class definition contains two
slot specifiers with the same name, an error is signaled.

• A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form provide mechanisms for the following:

• Supplying a default initial value form for a given slot.

• Requesting that methods for generic functions be automatically generated for reading or
writing slots.

• Controlling whether a given slot is shared by instances of the class or whether each instance
of the class has its own slot.

• Supplying a set of initialization arguments and initialization argument defaults to be used in
instance creation.

Programmer Interface Concepts 1–9



• Indicating that the metaclass is to be other than the default.

• Indicating the expected type for the value stored in the slot.

• Indicating the documentation string for the slot.

Creating Instances of Classes
The generic function make-instance creates and returns a new instance of a class. The Object
System provides several mechanisms for specifying how a new instance is to be initialized. For
example, it is possible to specify the initial values for slots in newly created instances either by
giving arguments to make-instance or by providing default initial values. Further initialization
activities can be performed by methods written for generic functions that are part of the initial-
ization protocol. The complete initialization protocol is described in the section “Object Creation
and Initialization.”

Slots
An object that has standard-class as its metaclass has zero or more named slots. The slots of
an object are determined by the class of the object. Each slot can hold one value. The name of a
slot is a symbol that is syntactically valid for use as a Common Lisp variable name.

When a slot does not have a value, the slot is said to be unbound. When an unbound slot is
read, the generic function slot-unbound is invoked. The system-supplied primary method for
slot-unbound signals an error.

The default initial value form for a slot is defined by the :initform slot option. When the :init-
form form is used to supply a value, it is evaluated in the lexical environment in which the
defclass form was evaluated. The :initform along with the lexical environment in which the
defclass form was evaluated is called a captured :initform. See the section “Object Creation
and Initialization” for more details.

A local slot is defined to be a slot that is visible to exactly one instance, namely the one in
which the slot is allocated. A shared slot is defined to be a slot that is visible to more than one
instance of a given class and its subclasses.

A class is said to define a slot with a given name when the defclass form for that class con-
tains a slot specifier with that name. Defining a local slot does not immediately create a slot; it
causes a slot to be created each time an instance of the class is created. Defining a shared slot
immediately creates a slot.

The :allocation slot option to defclass controls the kind of slot that is defined. If the value of
the :allocation slot option is :instance, a local slot is created. If the value of :allocation is
:class, a shared slot is created.

1–10 Common Lisp Object System Specification



A slot is said to be accessible in an instance of a class if the slot is defined by the class of the
instance or is inherited from a superclass of that class. At most one slot of a given name can be
accessible in an instance. A shared slot defined by a class is accessible in all instances of that
class. A detailed explanation of the inheritance of slots is given in the section “Inheritance of
Slots and Slot Options.”

Accessing Slots
Slots can be accessed in two ways: by use of the primitive function slot-value and by use of
generic functions generated by the defclass form.

The function slot-value can be used with any of the slot names specified in the defclass form to
access a specific slot accessible in an instance of the given class.

The macro defclass provides syntax for generating methods to read and write slots. If a reader
is requested, a method is automatically generated for reading the value of the slot, but no method
for storing a value into it is generated. If a writer is requested, a method is automatically
generated for storing a value into the slot, but no method for reading its value is generated. If
an accessor is requested, a method for reading the value of the slot and a method for storing
a value into the slot are automatically generated. Reader and writer methods are implemented
using slot-value.

When a reader or writer is specified for a slot, the name of the generic function to which the
generated method belongs is directly specified. If the name specified for the writer option is the
symbol name, the name of the generic function for writing the slot is the symbol name, and the
generic function takes two arguments: the new value and the instance, in that order. If the name
specified for the accessor option is the symbol name, the name of the generic function for reading
the slot is the symbol name, and the name of the generic function for writing the slot is the list
(setf name).

A generic function created or modified by supplying reader, writer, or accessor slot options can be
treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot whether or not reader or
writer methods exist for that slot. When slot-value is used, no reader or writer methods are
invoked.

The macro with-slots can be used to establish a lexical environment in which specified slots
are lexically available as if they were variables. The macro with-slots invokes the function
slot-value to access the specified slots.

The macro with-accessors can be used to establish a lexical environment in which specified
slots are lexically available through their accessors as if they were variables. The macro with-
accessors invokes the appropriate accessors to access the specified slots. Any accessors specified
by with-accessors must already have been defined before they are used.

Programmer Interface Concepts 1–11



Inheritance

A class can inherit methods, slots, and some defclass options from its superclasses. The following
sections describe the inheritance of methods, the inheritance of slots and slot options, and the
inheritance of class options.

Inheritance of Methods
A subclass inherits methods in the sense that any method applicable to all instances of a class is
also applicable to all instances of any subclass of that class.

The inheritance of methods acts the same way regardless of whether the method was created
by using one of the method-defining forms or by using one of the defclass options that causes
methods to be generated automatically.

The inheritance of methods is described in detail in the section “Method Selection and Combina-
tion.”

Inheritance of Slots and Slot Options
The set of the names of all slots accessible in an instance of a class C is the union of the sets
of names of slots defined by C and its superclasses. The structure of an instance is the set of
names of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines a slot with a given slot
name. If a slot is defined by a superclass of C, the slot is said to be inherited. The character-
istics of the slot are determined by the slot specifier of the defining class. Consider the defining
class for a slot S. If the value of the :allocation slot option is :instance, then S is a local slot
and each instance of C has its own slot named S that stores its own value. If the value of the
:allocation slot option is :class, then S is a shared slot, the class that defined S stores the
value, and all instances of C can access that single slot. If the :allocation slot option is omitted,
:instance is used.

In general, more than one class among C and its superclasses can define a slot with a given
name. In such cases, only one slot with the given name is accessible in an instance of C, and the
characteristics of that slot are a combination of the several slot specifiers, computed as follows:

• All the slot specifiers for a given slot name are ordered from most specific to least specific, ac-
cording to the order in C’s class precedence list of the classes that define them. All references
to the specificity of slot specifiers immediately below refers to this ordering.

• The allocation of a slot is controlled by the most specific slot specifier. If the most specific
slot specifier does not contain an :allocation slot option, :instance is used. Less specific slot
specifiers do not affect the allocation.

1–12 Common Lisp Object System Specification



• The default initial value form for a slot is the value of the :initform slot option in the most
specific slot specifier that contains one. If no slot specifier contains an :initform slot option,
the slot has no default initial value form.

• The contents of a slot will always be of type (and T1 . . . Tn) where T1 . . . Tn are the values of
the :type slot options contained in all of the slot specifiers. If no slot specifier contains the
:type slot option, the contents of the slot will always be of type t. The result of attempting
to store in a slot a value that does not satisfy the type of the slot is undefined.

• The set of initialization arguments that initialize a given slot is the union of the initialization
arguments declared in the :initarg slot options in all the slot specifiers.

• The documentation string for a slot is the value of the :documentation slot option in the
most specific slot specifier that contains one. If no slot specifier contains a :documentation
slot option, the slot has no documentation string.

A consequence of the allocation rule is that a shared slot can be shadowed. For example, if a
class C1 defines a slot named S whose value for the :allocation slot option is :class, that slot
is accessible in instances of C1 and all of its subclasses. However, if C2 is a subclass of C1 and
also defines a slot named S, C1’s slot is not shared by instances of C2 and its subclasses. When a
class C1 defines a shared slot, any subclass C2 of C1 will share this single slot unless the defclass
form for C2 specifies a slot of the same name or there is a superclass of C2 that precedes C1 in
the class precedence list of C2 that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type constraint of each slot
specifier that contributes to that slot. Because the result of attempting to store in a slot a value
that does not satisfy the type constraint for the slot is undefined, the value in a slot might fail to
satisfy its type constraint.

The :reader, :writer, and :accessor slot options create methods rather than define the charac-
teristics of a slot. Reader and writer methods are inherited in the sense described in the section
“Inheritance of Methods.”

Methods that access slots use only the name of the slot and the type of the slot’s value. Suppose
a superclass provides a method that expects to access a shared slot of a given name, and a
subclass defines a local slot with the same name. If the method provided by the superclass is used
on an instance of the subclass, the method accesses the local slot.

Inheritance of Class Options
The :default-initargs class option is inherited. The set of defaulted initialization arguments
for a class is the union of the sets of initialization arguments specified in the :default-initargs
class options of the class and its superclasses. When more than one default initial value form is
supplied for a given initialization argument, the default initial value form that is used is the one
supplied by the class that is most specific according to the class precedence list.

Programmer Interface Concepts 1–13



If a given :default-initargs class option specifies an initialization argument of the same name
more than once, an error is signaled.

Examples

(defclass C1 ()

((S1 :initform 5.4 :type number)

(S2 :allocation :class)))

(defclass C2 (C1)

((S1 :initform 5 :type integer)

(S2 :allocation :instance)

(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial value is 5.4 and whose
value should always be a number. The class C1 also has a shared slot named S2.

There is a local slot named S1 in instances of C2. The default initial value of S1 is 5. The value of
S1 will be of type (and integer number). There are also local slots named S2 and S3 in instances
of C2. The class C2 has a method for C2-S3 for reading the value of slot S3; there is also a method
for (setf C2-S3) that writes the value of S3.

1–14 Common Lisp Object System Specification



Integrating Types and Classes

The Common Lisp Object System maps the space of classes into the Common Lisp type space.
Every class that has a proper name has a corresponding type with the same name.

The proper name of every class is a valid type specifier. In addition, every class object is a valid
type specifier. Thus the expression (typep object class) evaluates to true if the class of object
is class itself or a subclass of class. The evaluation of the expression (subtypep class1 class2)
returns the values t t if class1 is a subclass of class2 or if they are the same class; otherwise
it returns the values nil t. If I is an instance of some class C named S and C is an instance of
standard-class, the evaluation of the expression (type-of I) will return S if S is the proper
name of C; if S is not the proper name of C, the expression (type-of I) will return C.

Because the names of classes and class objects are type specifiers, they may be used in the special
form the and in type declarations.

Many but not all of the predefined Common Lisp type specifiers have a corresponding class with
the same proper name as the type. These type specifiers are listed in Figure 1-1. For example,
the type array has a corresponding class named array. No type specifier that is a list, such as
(vector double-float 100), has a corresponding class. The form deftype does not create any
classes.

Each class that corresponds to a predefined Common Lisp type specifier can be implemented
in one of three ways, at the discretion of each implementation. It can be a standard class (of
the kind defined by defclass), a structure class (defined by defstruct), or a built-in class
(implemented in a special, non-extensible way).

A built-in class is one whose instances have restricted capabilities or special representations.
Attempting to use defclass to define subclasses of a built-in class signals an error. Calling make-
instance to create an instance of a built-in class signals an error. Calling slot-value on an
instance of a built-in class signals an error. Redefining a built-in class or using change-class
to change the class of an instance to or from a built-in class signals an error. However, built-in
classes can be used as parameter specializers in methods.

It is possible to determine whether a class is a built-in class by checking the metaclass. A stan-
dard class is an instance of standard-class, a built-in class is an instance of built-in-class, and
a structure class is an instance of structure-class.

Each structure type created by defstruct without using the :type option has a corresponding
class. This class is an instance of structure-class. The :include option of defstruct creates a
direct subclass of the class that corresponds to the included structure.

The purpose of specifying that many of the standard Common Lisp type specifiers have a cor-
responding class is to enable users to write methods that discriminate on these types. Method
selection requires that a class precedence list can be determined for each class.

Programmer Interface Concepts 1–15



The hierarchical relationships among the Common Lisp type specifiers are mirrored by relation-
ships among the classes corresponding to those types. The existing type hierarchy is used for
determining the class precedence list for each class that corresponds to a predefined Common
Lisp type. In some cases, Common Lisp: The Language does not specify a local precedence order
for two supertypes of a given type specifier. For example, null is a subtype of both symbol and
list, but Common Lisp: The Language does not specify whether symbol is more specific or less
specific than list. The Common Lisp Object System specification defines those relationships for
all such classes.

The following figure lists the set of classes required by the Object System that correspond to
predefined Common Lisp type specifiers. The superclasses of each such class are presented in
order from most specific to most general, thereby defining the class precedence list for the class.
The local precedence order for each class that corresponds to a Common Lisp type specifier can
be derived from this table.

Predefined Common Lisp Type Class Precedence List for Corresponding Class
array (array t)
bit-vector (bit-vector vector array sequence t)
character (character t)
complex (complex number t)
cons (cons list sequence t)
float (float number t)
integer (integer rational number t)
list (list sequence t)
null (null symbol list sequence t)
number (number t)
ratio (ratio rational number t)
rational (rational number t)
sequence (sequence t)
string (string vector array sequence t)
symbol (symbol t)
t (t)
vector (vector array sequence t)

Figure 1–1.

Individual implementations may be extended to define other type specifiers to have a correspond-
ing class. Individual implementations can be extended to add other subclass relationships and to
add other elements to the class precedence lists in the above table, as long as they do not violate
the type relationships and disjointness requirements specified by Common Lisp: The Language.
A standard class defined with no direct superclasses is guaranteed to be disjoint from all of the
classes in the table, except for the class named t.

1–16 Common Lisp Object System Specification



The following Common Lisp types will have corresponding classes when Common Lisp is modified
to define them each as being disjoint from cons, symbol, array, number, and character:

• function

• hash-table

• package

• pathname

• random-state

• readtable

• stream

Programmer Interface Concepts 1–17



Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its direct superclasses.
This ordering is called the local precedence order. It is an ordered list of the class and its
direct superclasses. The class precedence list for a class C is a total ordering on C and its
superclasses that is consistent with the local precedence orders for each of C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other direct super-
classes specified to its right in the superclasses list of the defclass form. For every class C, define

RC = {(C,C1), (C1, C2), . . . , (Cn−1, Cn)}

where C1, . . . , Cn are the direct superclasses of C in the order in which they are mentioned in
the defclass form. These ordered pairs generate the total ordering on the class C and its direct
superclasses.

Let SC be the set of C and its superclasses. Let R be

R =
⋃

c∈SC

Rc

The set R may or may not generate a partial ordering, depending on whether the Rc, c ∈ SC , are
consistent; it is assumed that they are consistent and that R generates a partial ordering. When
the Rc are not consistent, it is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of SC with respect
to the partial ordering generated by R. When the topological sort must select a class from a set
of two or more classes, none of which are preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below.

If R is inconsistent, an error is signaled.

Topological Sorting
Topological sorting proceeds by finding a class C in SC such that no other class precedes that
element according to the elements in R. The class C is placed first in the result. Remove C from
SC , and remove all pairs of the form (C,D), D ∈ SC , from R. Repeat the process, adding classes
with no predecessors to the end of the result. Stop when no element can be found that has no
predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If every class in the
finite set of classes is preceded by another, then R contains a loop. That is, there is a chain of
classes C1, . . . , Cn such that Ci precedes Ci+1, 1 ≤ i < n, and Cn precedes C1.

Sometimes there are several classes from SC with no predecessors. In this case select the one that
has a direct subclass rightmost in the class precedence list computed so far. Because a direct

1–18 Common Lisp Object System Specification



superclass precedes all other direct superclasses to its right, there can be only one such candidate
class. If there is no such candidate class, R does not generate a partial ordering—the Rc, c ∈ SC ,
are inconsistent.

In more precise terms, let {N1, . . . , Nm}, m ≥ 2, be the classes from SC with no predecessors. Let
(C1 . . . Cn), n ≥ 1, be the class precedence list constructed so far. C1 is the most specific class,
and Cn is the least specific. Let 1 ≤ j ≤ n be the largest number such that there exists an i where
1 ≤ i ≤ m and Ni is a direct superclass of Cj ; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that the classes
in a simple superclass chain are adjacent in the class precedence list and that classes in each
relatively separated subgraph are adjacent in the class precedence list. For example, let T1 and
T2 be subgraphs whose only element in common is the class J. Suppose that no superclass of J
appears in either T1 or T2. Let C1 be the bottom of T1; and let C2 be the bottom of T2. Suppose
C is a class whose direct superclasses are C1 and C2 in that order, then the class precedence list
for C will start with C and will be followed by all classes in T1 except J . All the classes of T2 will
be next. The class J and its superclasses will appear last.

Examples
This example determines a class precedence list for the class pie. The following classes are
defined:

(defclass pie (apple cinnamon) ())

(defclass apple (fruit) ())

(defclass cinnamon (spice) ())

(defclass fruit (food) ())

(defclass spice (food) ())

(defclass food () ())

The set S = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The set R =
{(pie, apple), (apple, cinnamon), (apple, fruit), (cinnamon, spice), (fruit, food),

(spice, food), (food, standard-object), (standard-object, t)}.

The class pie is not preceded by anything, so it comes first; the result so far is (pie). Remove
pie from S and pairs mentioning pie from R to get S = {apple, cinnamon, fruit, spice, food,

standard-object, t} and R = {(apple, cinnamon), (apple, fruit), (cinnamon, spice), (fruit,

food),

(spice, food), (food, standard-object), (standard-object, t)}.

The class apple is not preceded by anything, so it is next; the result is (pie apple). Removing

Programmer Interface Concepts 1–19



apple and the relevant pairs results in S = {cinnamon, fruit, spice, food, standard-object, t}
and R = {(cinnamon, spice), (fruit, food), (spice, food), (food, standard-object),

(standard-object, t)}.

The classes cinnamon and fruit are not preceded by anything, so the one with a direct subclass
rightmost in the class precedence list computed so far goes next. The class apple is a direct
subclass of fruit, and the class pie is a direct subclass of cinnamon. Because apple appears to the
right of pie in the precedence list, fruit goes next, and the result so far is (pie apple fruit).
S = {cinnamon, spice, food, standard-object, t}; R = {(cinnamon, spice), (spice, food),

(food, standard-object), (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon). At this
point S = {spice, food, standard-object, t}; R = {(spice, food), (food, standard-object),

(standard-object, t)}.

The classes spice, food, standard-object, and t are added in that order, and the class precedence
list is (pie apple fruit cinnamon spice food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) ())

(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of superclasses must be preserved.
The class apple must precede fruit because a class always precedes its own superclasses. When
this situation occurs, an error is signaled when the system tries to compute the class precedence
list.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())

(defclass pastry (cinnamon apple) ())

(defclass apple () ())

(defclass cinnamon () ())

The class precedence list for pie is (pie apple cinnamon standard-object t).

The class precedence list for pastry is (pastry cinnamon apple standard-object t).

It is not a problem for apple to precede cinnamon in the ordering of the superclasses of pie but not
in the ordering for pastry. However, it is not possible to build a new class that has both pie and
pastry as superclasses.

1–20 Common Lisp Object System Specification



Generic Functions and Methods

A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. The methods define the class-specific behavior and operations of the
generic function. The following sections describe generic functions and methods.

Introduction to Generic Functions
A generic function object contains a set of methods, a lambda-list, a method combination type,
and other information.

Like an ordinary Lisp function, a generic function takes arguments, performs a series of oper-
ations, and perhaps returns useful values. An ordinary function has a single body of code that
is always executed when the function is called. A generic function has a set of bodies of code
of which a subset is selected for execution. The selected bodies of code and the manner of their
combination are determined by the classes or identities of one or more of the arguments to the
generic function and by its method combination type.

Ordinary functions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and used as the first
argument to funcall and apply.

In Common Lisp, a name can be given to an ordinary function in one of two ways: a global
name can be given to a function using the defun construct; a local name can be given using the
flet or labels special forms. A generic function can be given a global name using the defmethod
or defgeneric construct. A generic function can be given a local name using the generic-flet,
generic-labels, or with-added-methods special forms. The name of a generic function, like the
name of an ordinary function, can be either a symbol or a two-element list whose first element is
setf and whose second element is a symbol. This is true for both local and global names.

The generic-flet special form creates new local generic functions using the set of methods
specified by the method definitions in the generic-flet form. The scoping of generic function
names within a generic-flet form is the same as for flet.

The generic-labels special form creates a set of new mutually recursive local generic functions
using the set of methods specified by the method definitions in the generic-labels form. The
scoping of generic function names within a generic-labels form is the same as for labels.

The with-added-methods special form creates new local generic functions by adding the set
of methods specified by the method definitions with a given name in the with-added-methods
form to copies of the methods of the lexically visible generic function of the same name. If there
is a lexically visible ordinary function of the same name as one of specified generic functions, that
function becomes the method function of the default method for the new generic function of that
name.

Programmer Interface Concepts 1–21



The generic-function macro creates an anonymous generic function with the set of methods
specified by the method definitions in the generic-function form.

When a defgeneric form is evaluated, one of three actions is taken:

• If a generic function of the given name already exists, the existing generic function object
is modified. Methods specified by the current defgeneric form are added, and any meth-
ods in the existing generic function that were defined by a previous defgeneric form are
removed. Methods added by the current defgeneric form might replace methods defined by
defmethod or defclass. No other methods in the generic function are affected or replaced.

• If the given name names a non-generic function, a macro, or a special form, an error is
signaled.

• Otherwise a generic function is created with the methods specified by the method definitions
in the defgeneric form.

Some forms specify the options of a generic function, such as the type of method combination
it uses or its argument precedence order. These forms will be referred to as “forms that specify
generic function options.” These forms are: defgeneric, generic-function, generic-flet,
generic-labels, and with-added-methods.

Some forms define methods for a generic function. These forms will be referred to as “method-
defining forms.” These forms are: defgeneric, defmethod, generic-function, generic-flet,
generic-labels, with-added-methods, and defclass. Note that all the method-defining forms
except defclass and defmethod can specify generic function options and so are also forms that
specify generic function options.

Introduction to Methods
A method object contains a method function, a sequence of parameter specializers that specify
when the given method is applicable, a lambda-list, and a sequence of qualifiers that are used by
the method combination facility to distinguish among methods.

A method object is not a function and cannot be invoked as a function. Various mechanisms in
the Object System take a method object and invoke its method function, as is the case when a
generic function is invoked. When this occurs it is said that the method is invoked or called.

A method-defining form contains the code that is to be run when the arguments to the generic
function cause the method that it defines to be invoked. When a method-defining form is evalu-
ated, a method object is created and one of four actions is taken:

• If a generic function of the given name already exists and if a method object already exists
that agrees with the new one on parameter specializers and qualifiers, the new method object
replaces the old one. For a definition of one method agreeing with another on parameter spe-
cializers and qualifiers, see the section “Agreement on Parameter Specializers and Qualifiers.”

1–22 Common Lisp Object System Specification



• If a generic function of the given name already exists and if there is no method object that
agrees with the new one on parameter specializers and qualifiers, the existing generic function
object is modified to contain the new method object.

• If the given name names a non-generic function, a macro, or a special form, an error is
signaled.

• Otherwise a generic function is created with the methods specified by the method-defining
form.

If the lambda-list of a new method is not congruent with the lambda-list of the generic function,
an error is signaled. If a method-defining form that cannot specify generic function options
creates a new generic function, a lambda-list for that generic function is derived from the lambda-
lists of the methods in the method-defining form in such a way as to be congruent with them.
For a discussion of congruence, see the section “Congruent Lambda-lists for All Methods of a
Generic Function.”

Each method has a specialized lambda-list, which determines when that method can be
applied. A specialized lambda-list is like an ordinary lambda-list except that a specialized
parameter may occur instead of the name of a required parameter. A specialized parameter is a
list (variable-name parameter-specializer-name), where parameter-specializer-name is one of the
following:

• A name that names a class

• (eql form)

A parameter specializer name denotes a parameter specializer as follows:

• A name that names a class denotes that class.

• The list (eql form) denotes (eql object), where object is the result of evaluating form.
The form form is evaluated in the lexical environment in which the method-defining form is
evaluated. Note that form is evaluated only once, at the time the method is defined, not each
time the generic function is called.

Parameter specializer names are used in macros intended as the user-level interface (defmethod),
while parameter specializers are used in the functional interface.

Only required parameters may be specialized, and there must be a parameter specializer for each
required parameter. For notational simplicity, if some required parameter in a specialized lambda-
list in a method-defining form is simply a variable name, its parameter specializer defaults to the
class named t.

Given a generic function and a set of arguments, an applicable method is a method for that
generic function whose parameter specializers are satisfied by their corresponding arguments. The
following definition specifies what it means for a method to be applicable and for an argument to
satisfy a parameter specializer.

Programmer Interface Concepts 1–23



Let 〈A1, . . . , An〉 be the required arguments to a generic function in order. Let 〈P1, . . . , Pn〉 be the
parameter specializers corresponding to the required parameters of the method M in order. The
method M is applicable when each Ai satisfies Pi. If Pi is a class, and if Ai is an instance of a
class C, then it is said that Ai satisfies Pi when C = Pi or when C is a subclass of Pi. If Pi is
(eql object), then it is said that Ai satisfies Pi when the function eql applied to Ai and object is
true.

Because a parameter specializer is a type specifier, the function typep can be used during
method selection to determine whether an argument satisfies a parameter specializer. In general
a parameter specializer cannot be a type specifier list, such as (vector single-float). The only
parameter specializer that can be a list is (eql object). This requires that Common Lisp be
modified to include the type specifier eql to be defined as if the following were evaluated:

(deftype eql (object) ‘(member ,object))

A method all of whose parameter specializers are the class named t is called a default method;
it is always applicable but may be shadowed by a more specific method.

Methods can have qualifiers, which give the method combination procedure a way to distinguish
among methods. A method that has one or more qualifiers is called a qualified method. A
method with no qualifiers is called an unqualified method. A qualifier is any object other than
a list, that is, any non-nil atom. The qualifiers defined by standard method combination and by
the built-in method combination types are symbols.

In this specification, the terms primary method and auxiliary method are used to partition
methods within a method combination type according to their intended use. In standard method
combination, primary methods are unqualified methods and auxiliary methods are methods
with a single qualifier that is one of :around, :before, or :after. When a method combination
type is defined using the short form of define-method-combination, primary methods are
methods qualified with the name of the type of method combination, and auxiliary methods have
the qualifier :around. Thus the terms primary method and auxiliary method have only a
relative definition within a given method combination type.

Agreement on Parameter Specializers and Qualifiers
Two methods are said to agree with each other on parameter specializers and qualifiers if the
following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter special-
izers of the two methods are P1,1 . . . P1,n and P2,1 . . . P2,n.

2. For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer P1,i agrees with P2,i

if P1,i and P2,i are the same class or if P1,i = (eql object1), P2,i = (eql object2), and (eql
object1 object2). Otherwise P1,i and P2,i do not agree.

1–24 Common Lisp Object System Specification



3. The lists of qualifiers of both methods contain the same non-nil atoms in the same order.
That is, the lists are equal.

Congruent Lambda-Lists for All Methods of a Generic Function
These rules define the congruence of a set of lambda-lists, including the lambda-list of each
method for a given generic function and the lambda-list specified for the generic function itself, if
given.

1. Each lambda-list must have the same number of required parameters.

2. Each lambda-list must have the same number of optional parameters. Each method can
supply its own default for an optional parameter.

3. If any lambda-list mentions &rest or &key, each lambda-list must mention one or both of
them.

4. If the generic function lambda-list mentions &key, each method must accept all of the
keyword names mentioned after &key, either by accepting them explicitly, by specifying
&allow-other-keys, or by specifying &rest but not &key. Each method can accept addi-
tional keyword arguments of its own. The checking of the validity of keyword names is done
in the generic function, not in each method. A method is invoked as if the keyword argument
pair whose keyword is :allow-other-keys and whose value is t were supplied, though no such
argument pair will be passed.

5. The use of &allow-other-keys need not be consistent across lambda-lists. If &allow-other-
keys is mentioned in the lambda-list of any applicable method or of the generic function, any
keyword arguments may be mentioned in the call to the generic function.

6. The use of &aux need not be consistent across methods.

If a method-defining form that cannot specify generic function options creates a generic
function, and if the lambda-list for the method mentions keyword arguments, the lambda-list
of the generic function will mention &key (but no keyword arguments).

Keyword Arguments in Generic Functions and Methods
When a generic function or any of its methods mentions &key in a lambda-list, the specific
set of keyword arguments accepted by the generic function varies according to the applicable
methods. The set of keyword arguments accepted by the generic function for a particular call
is the union of the keyword arguments accepted by all applicable methods and the keyword
arguments mentioned after &key in the generic function definition, if any. A method that has
&rest but not &key does not affect the set of acceptable keyword arguments. If the lambda-list
of any applicable method or of the generic function definition contains &allow-other-keys, all
keyword arguments are accepted by the generic function.

Programmer Interface Concepts 1–25



The lambda-list congruence rules require that each method accept all of the keyword arguments
mentioned after &key in the generic function definition, by accepting them explicitly, by spec-
ifying &allow-other-keys, or by specifying &rest but not &key. Each method can accept
additional keyword arguments of its own, in addition to the keyword arguments mentioned in the
generic function definition.

If a generic function is passed a keyword argument that no applicable method accepts, an error is
signaled.

For example, suppose there are two methods defined for width as follows:

(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition for width. The evalu-
ation of the following form will signal an error because the keyword argument :pixel-size is not
accepted by the applicable method.

(width (make-instance ‘character-class :char #\Q)

:font ’baskerville :pixel-size 10)

The evaluation of the following form will signal an error.

(width (make-instance ‘picture-class :glyph (glyph #\Q))

:font ’baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class named character-

picture-class is a subclass of both picture-class and character-class.

(width (make-instance ‘character-picture-class :char #\Q)

:font ’baskerville :pixel-size 10)

1–26 Common Lisp Object System Specification



Method Selection and Combination

When a generic function is called with particular arguments, it must determine the code to
execute. This code is called the effective method for those arguments. The effective method is
a combination of the applicable methods in the generic function. A combination of methods is
a Lisp expression that contains calls to some or all of the methods. If a generic function is called
and no methods apply, the generic function no-applicable-method is invoked.

When the effective method has been determined, it is invoked with the same arguments that
were passed to the generic function. Whatever values it returns are returned as the values of the
generic function.

Determining the Effective Method
The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply method combination to the sorted list of applicable methods, producing the effective
method.

Selecting the Applicable Methods

This step is described in the section “Introduction to Methods.”

Sorting the Applicable Methods by Precedence Order

To compare the precedence of two methods, their parameter specializers are examined in order.
The default examination order is from left to right, but an alternative order may be specified
by the :argument-precedence-order option to defgeneric or to any of the other forms that
specify generic function options.

The corresponding parameter specializers from each method are compared. When a pair of
parameter specializers are equal, the next pair are compared for equality. If all corresponding
parameter specializers are equal, the two methods must have different qualifiers; in this case,
either method can be selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of parameter specializers
that are not equal determines the precedence. If both parameter specializers are classes, the more
specific of the two methods is the method whose parameter specializer appears earlier in the class
precedence list of the corresponding argument. Because of the way in which the set of applicable
methods is chosen, the parameter specializers are guaranteed to be present in the class precedence
list of the class of the argument.

Programmer Interface Concepts 1–27



If just one parameter specializer is (eql object), the method with that parameter specializer
precedes the other method. If both parameter specializers are eql forms, the specializers must be
the same (otherwise the two methods would not both have been applicable to this argument).

The resulting list of applicable methods has the most specific method first and the least specific
method last.

Applying Method Combination to the Sorted List of Applicable Methods

In the simple case—if standard method combination is used and all applicable methods are
primary methods—the effective method is the most specific method. That method can call the
next most specific method by using the function call-next-method. The method that call-
next-method will call is referred to as the next method. The predicate next-method-p tests
whether a next method exists. If call-next-method is called and there is no next most specific
method, the generic function no-next-method is invoked.

In general, the effective method is some combination of the applicable methods. It is defined by a
Lisp form that contains calls to some or all of the applicable methods, returns the value or values
that will be returned as the value or values of the generic function, and optionally makes some
of the methods accessible by means of call-next-method. This Lisp form is the body of the
effective method; it is augmented with an appropriate lambda-list to make it a function.

The role of each method in the effective method is determined by its method qualifiers and the
specificity of the method. A qualifier serves to mark a method, and the meaning of a qualifier is
determined by the way that these marks are used by this step of the procedure. If an applicable
method has an unrecognized qualifier, this step signals an error and does not include that method
in the effective method.

When standard method combination is used together with qualified methods, the effective method
is produced as described in the section “Standard Method Combination.”

Another type of method combination can be specified by using the :method-combination
option of defgeneric or of any of the other forms that specify generic function options. In this
way this step of the procedure can be customized.

New types of method combination can be defined by using the define-method-combination
macro.

The meta-object level also offers a mechanism for defining new types of method combination. The
generic function compute-effective-method receives as arguments the generic function, the
method combination object, and the sorted list of applicable methods. It returns the Lisp form
that defines the effective method. A method for compute-effective-method can be defined
directly by using defmethod or indirectly by using define-method-combination. A method
combination object is an object that encapsulates the method combination type and options
specified by the :method-combination option to forms that specify generic function options.

1–28 Common Lisp Object System Specification



Implementation Note:
In the simplest implementation, the generic function would compute the effective
method each time it was called. In practice, this will be too inefficient for some
implementations. Instead, these implementations might employ a variety of
optimizations of the three-step procedure. Some illustrative examples of such
optimizations are the following:

• Use a hash table keyed by the class of the arguments to store the effective
method.

• Compile the effective method and save the resulting compiled function in a
table.

• Recognize the Lisp form as an instance of a pattern of control structure and
substitute a closure that implements that structure.

• Examine the parameter specializers of all methods for the generic function
and enumerate all possible effective methods. Combine the effective methods,
together with code to select from among them, into a single function and
compile that function. Call that function whenever the generic function is
called.

Standard Method Combination
Standard method combination is supported by the class standard-generic-function. It is used
if no other type of method combination is specified or if the built-in method combination type
standard is specified.

Primary methods define the main action of the effective method, while auxiliary methods
modify that action in one of three ways. A primary method has no method qualifiers.

An auxiliary method is a method whose method qualifier is :before, :after, or :around. Stan-
dard method combination allows no more than one qualifier per method; if a method definition
specifies more than one qualifier per method, an error is signaled.

• A :before method has the keyword :before as its only qualifier. A :before method specifies
code that is to be run before any primary methods.

• An :after method has the keyword :after as its only qualifier. An :after method specifies
code that is to be run after primary methods.

• An :around method has the keyword :around as its only qualifier. An :around method
specifies code that is to be run instead of other applicable methods but which is able to cause
some of them to be run.

Programmer Interface Concepts 1–29



The semantics of standard method combination is as follows:

• If there are any :around methods, the most specific :around method is called. It supplies
the value or values of the generic function.

• Inside the body of an :around method, call-next-method can be used to call the next
method. When the next method returns, the :around method can execute more code,
perhaps based on the returned value or values. The generic function no-next-method is
invoked if call-next-method is used and there is no applicable method to call. The function
next-method-p may be used to determine whether a next method exists.

• If an :around method invokes call-next-method, the next most specific :around method is
called, if one is applicable. If there are no :around methods or if call-next-method is called
by the least specific :around method, the other methods are called as follows:

– All the :before methods are called, in most-specific-first order. Their values are ignored.
An error is signaled if call-next-method is used in a :before method.

– The most specific primary method is called. Inside the body of a primary method, call-
next-method may be used to call the next most specific primary method. When that
method returns, the previous primary method can execute more code, perhaps based
on the returned value or values. The generic function no-next-method is invoked if
call-next-method is used and there are no more applicable primary methods. The
function next-method-p may be used to determine whether a next method exists. If
call-next-method is not used, only the most specific primary method is called.

– All the :after methods are called in most-specific-last order. Their values are ignored. An
error is signaled if call-next-method is used in an :after method.

• If no :around methods were invoked, the most specific primary method supplies the value
or values returned by the generic function. The value or values returned by the invocation
of call-next-method in the least specific :around method are those returned by the most
specific primary method.

In standard method combination, if there is an applicable method but no applicable primary
method, an error is signaled.

The :before methods are run in most-specific-first order while the :after methods are run
in least-specific-first order. The design rationale for this difference can be illustrated with an
example. Suppose class C1 modifies the behavior of its superclass, C2, by adding :before and
:after methods. Whether the behavior of the class C2 is defined directly by methods on C2 or
is inherited from its superclasses does not affect the relative order of invocation of methods on
instances of the class C1. Class C1’s :before method runs before all of class C2’s methods. Class
C1’s :after method runs after all of class C2’s methods.

By contrast, all :around methods run before any other methods run. Thus a less specific
:around method runs before a more specific primary method.

1–30 Common Lisp Object System Specification



If only primary methods are used and if call-next-method is not used, only the most specific
method is invoked; that is, more specific methods shadow more general ones.

Declarative Method Combination
The macro define-method-combination defines new forms of method combination. It provides
a mechanism for customizing the production of the effective method. The default procedure for
producing an effective method is described in the section “Determining the Effective Method.”
There are two forms of define-method-combination. The short form is a simple facility while
the long form is more powerful and more verbose. The long form resembles defmacro in that
the body is an expression that computes a Lisp form; it provides mechanisms for implementing
arbitrary control structures within method combination and for arbitrary processing of method
qualifiers. The syntax and use of both forms of define-method-combination are explained in
Chapter 2.

Built-in Method Combination Types
The Common Lisp Object System provides a set of built-in method combination types. To specify
that a generic function is to use one of these method combination types, the name of the method
combination type is given as the argument to the :method-combination option to defgeneric
or to the :method-combination option to any of the other forms that specify generic function
options.

The names of the built-in method combination types are +, and, append, list, max, min,
nconc, or, progn, and standard.

The semantics of the standard built-in method combination type was described in the section
“Standard Method Combination.” The other built-in method combination types are called
simple built-in method combination types.

The simple built-in method combination types act as though they were defined by the short form
of define-method-combination. They recognize two roles for methods:

• An :around method has the keyword symbol :around as its sole qualifier. The meaning
of :around methods is the same as in standard method combination. Use of the functions
call-next-method and next-method-p is supported in :around methods.

• A primary method has the name of the method combination type as its sole qualifier. For
example, the built-in method combination type and recognizes methods whose sole qualifier
is and; these are primary methods. Use of the functions call-next-method and next-
method-p is not supported in primary methods.

The semantics of the simple built-in method combination types is as follows:

• If there are any :around methods, the most specific :around method is called. It supplies
the value or values of the generic function.

Programmer Interface Concepts 1–31



• Inside the body of an :around method, the function call-next-method can be used to call
the next method. The generic function no-next-method is invoked if call-next-method is
used and there is no applicable method to call. The function next-method-p may be used
to determine whether a next method exists. When the next method returns, the :around
method can execute more code, perhaps based on the returned value or values.

• If an :around method invokes call-next-method, the next most specific :around method is
called, if one is applicable. If there are no :around methods or if call-next-method is called
by the least specific :around method, a Lisp form derived from the name of the built-in
method combination type and from the list of applicable primary methods is evaluated to
produce the value of the generic function. Suppose the name of the method combination type
is operator and the call to the generic function is of the form

(generic-function a1 . . . an)

Let M1, . . . ,Mk be the applicable primary methods in order; then the derived Lisp form is

(operator 〈M1 a1 . . . an〉 . . . 〈Mk a1 . . . an〉)

If the expression 〈Mi a1 . . . an〉 is evaluated, the method Mi will be applied to the arguments
a1 . . . an. For example, if operator is or, the expression 〈Mi a1 . . . an〉 is evaluated only if
〈Mj a1 . . . an〉, 1 ≤ j < i, returned nil.

The default order for the primary methods is :most-specific-first. However, the order can
be reversed by supplying :most-specific-last as the second argument to the :method-
combination option.

The simple built-in method combination types require exactly one qualifier per method. An
error is signaled if there are applicable methods with no qualifiers or with qualifiers that are not
supported by the method combination type. An error is signaled if there are applicable :around
methods and no applicable primary methods.

1–32 Common Lisp Object System Specification



Meta-Objects

The implementation of the Object System manipulates classes, methods, and generic functions.
The meta-object protocol specifies a set of generic functions defined by methods on classes; the
behavior of those generic functions defines the behavior of the Object System. The instances
of the classes on which those methods are defined are called meta-objects. Programming at
the meta-object protocol level involves defining new classes of meta-objects along with methods
specialized on these classes.

Metaclasses
The metaclass of an object is the class of its class. The metaclass determines the representation
of instances of its instances and the forms of inheritance used by its instances for slot descriptions
and method inheritance. The metaclass mechanism can be used to provide particular forms of
optimization or to tailor the Common Lisp Object System for particular uses. The protocol for
defining metaclasses is discussed in the chapter “The Common Lisp Object System Meta-Object
Protocol.”

Standard Metaclasses
The Common Lisp Object System provides a number of predefined metaclasses. These include the
classes standard-class, built-in-class, and structure-class:

• The class standard-class is the default class of classes defined by defclass.

• The class built-in-class is the class whose instances are classes that have special imple-
mentations with restricted capabilities. Any class that corresponds to a standard Common
Lisp type specified in Common Lisp: The Language might be an instance of built-in-class.
The predefined Common Lisp type specifiers that are required to have corresponding classes
are listed in Figure 1-1. It is implementation dependent whether each of these classes is
implemented as a built-in class.

• All classes defined by means of defstruct are instances of structure-class.

Standard Meta-objects
The Object System supplies a set of meta-objects, called standard meta-objects. These include
the class standard-object and instances of the classes standard-method, standard-generic-
function, and method-combination.

• The class standard-method is the default class of methods defined by the forms
defmethod, defgeneric, generic-function, generic-flet, generic-labels, and with-
added-methods.

Programmer Interface Concepts 1–33



• The class standard-generic-function is the default class of generic functions defined by
the forms defmethod, defgeneric, generic-function, generic-flet, generic-labels, with-
added-methods, and defclass.

• The class named standard-object is an instance of the class standard-class and is a
superclass of every class that is an instance of standard-class except itself and structure-
class.

• Every method combination object is an instance of a subclass of the class method-
combination.

1–34 Common Lisp Object System Specification



Object Creation and Initialization

The generic function make-instance creates and returns a new instance of a class. The first
argument is a class or the name of a class, and the remaining arguments form an initialization
argument list.

The initialization of a new instance consists of several distinct steps, including the following:
combining the explicitly supplied initialization arguments with default values for the unsupplied
initialization arguments, checking the validity of the initialization arguments, allocating storage
for the instance, filling slots with values, and executing user-supplied methods that perform
additional initialization. Each step of make-instance is implemented by a generic function to
provide a mechanism for customizing that step. In addition, make-instance is itself a generic
function and thus also can be customized.

The Object System specifies system-supplied primary methods for each step and thus specifies
a well-defined standard behavior for the entire initialization process. The standard behavior
provides four simple mechanisms for controlling initialization:

• Declaring a symbol to be an initialization argument for a slot. An initialization argument
is declared by using the :initarg slot option to defclass. This provides a mechanism for
supplying a value for a slot in a call to make-instance.

• Supplying a default value form for an initialization argument. Default value forms for ini-
tialization arguments are defined by using the :default-initargs class option to defclass. If
an initialization argument is not explicitly provided as an argument to make-instance, the
default value form is evaluated in the lexical environment of the defclass form that defined
it, and the resulting value is used as the value of the initialization argument.

• Supplying a default initial value form for a slot. A default initial value form for a slot is de-
fined by using the :initform slot option to defclass. If no initialization argument associated
with that slot is given as an argument to make-instance or is defaulted by :default-
initargs, this default initial value form is evaluated in the lexical environment of the def-
class form that defined it, and the resulting value is stored in the slot. The :initform form
for a local slot may be used when creating an instance, when updating an instance to conform
to a redefined class, or when updating an instance to conform to the definition of a different
class. The :initform form for a shared slot may be used when defining or re-defining the
class.

• Defining methods for initialize-instance and shared-initialize. The slot-filling behav-
ior described above is implemented by a system-supplied primary method for initialize-
instance which invokes shared-initialize. The generic function shared-initialize imple-
ments the parts of initialization shared by these four situations: when making an instance,
when re-initializing an instance, when updating an instance to conform to a redefined class,
and when updating an instance to conform to the definition of a different class. The system-
supplied primary method for shared-initialize directly implements the slot-filling behavior
described above, and initialize-instance simply invokes shared-initialize.

Programmer Interface Concepts 1–35



Initialization Arguments
An initialization argument controls object creation and initialization. It is often convenient to use
keyword symbols to name initialization arguments, but the name of an initialization argument
can be any symbol, including nil. An initialization argument can be used in two ways: to fill a
slot with a value or to provide an argument for an initialization method. A single initialization
argument can be used for both purposes.

An initialization argument list is a list of alternating initialization argument names and
values. Its structure is identical to a property list and also to the portion of an argument list
processed for &key parameters. As in those lists, if an initialization argument name appears
more than once in an initialization argument list, the leftmost occurrence supplies the value
and the remaining occurrences are ignored. The arguments to make-instance (after the first
argument) form an initialization argument list. Error-checking of initialization argument names is
disabled if the keyword argument pair whose keyword is :allow-other-keys and whose value is
non-nil appears in the initialization argument list.

An initialization argument can be associated with a slot. If the initialization argument has a value
in the initialization argument list, the value is stored into the slot of the newly created object,
overriding any :initform form associated with the slot. A single initialization argument can
initialize more than one slot. An initialization argument that initializes a shared slot stores its
value into the shared slot, replacing any previous value.

An initialization argument can be associated with a method. When an object is created and a
particular initialization argument is supplied, the generic functions initialize-instance, shared-
initialize, and allocate-instance are called with that initialization argument’s name and value
as a keyword argument pair. If a value for the initialization argument is not supplied in the
initialization argument list, the method’s lambda-list supplies a default value.

Initialization arguments are used in four situations: when making an instance, when re-initializing
an instance, when updating an instance to conform to a redefined class, and when updating an
instance to conform to the definition of a different class.

Because initialization arguments are used to control the creation and initialization of an instance
of some particular class, we say that an initialization argument is “an initialization argument for”
that class.

Declaring the Validity of Initialization Arguments
Initialization arguments are checked for validity in each of the four situations that use them. An
initialization argument may be valid in one situation and not another. For example, the system-
supplied primary method for make-instance defined for the class standard-class checks the
validity of its initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid in that situation.

1–36 Common Lisp Object System Specification



There are two means for declaring initialization arguments valid.

• Initialization arguments that fill slots are declared as valid by the :initarg slot option to
defclass. The :initarg slot option is inherited from superclasses. Thus the set of valid
initialization arguments that fill slots for a class is the union of the initialization arguments
that fill slots declared as valid by that class and its superclasses. Initialization arguments that
fill slots are valid in all four contexts.

• Initialization arguments that supply arguments to methods are declared as valid by defining
those methods. The keyword name of each keyword parameter specified in the method’s
lambda-list becomes an initialization argument for all classes for which the method is appli-
cable. Thus method inheritance controls the set of valid initialization arguments that supply
arguments to methods. The generic functions for which method definitions serve to declare
initialization arguments valid are as follows:

– Making an instance of a class: allocate-instance, initialize-instance, and shared-
initialize. Initialization arguments declared as valid by these methods are valid when
making an instance of a class.

– Re-initializing an instance: reinitialize-instance and shared-initialize. Initialization
arguments declared as valid by these methods are valid when re-initializing an instance.

– Updating an instance to conform to a redefined class: update-instance-for-redefined-
class and shared-initialize. Initialization arguments declared as valid by these methods
are valid when updating an instance to conform to a redefined class.

– Updating an instance to conform to the definition of a different class: update-instance-
for-different-class and shared-initialize. Initialization arguments declared as valid
by these methods are valid when updating an instance to conform to the definition of a
different class.

The set of valid initialization arguments for a class is the set of valid initialization arguments
that either fill slots or supply arguments to methods, along with the predefined initialization
argument :allow-other-keys. The default value for :allow-other-keys is nil. The meaning of
:allow-other-keys is the same as when it is passed to an ordinary function.

Defaulting of Initialization Arguments
A default value form can be supplied for an initialization argument by using the :default-
initargs class option. If an initialization argument is declared valid by some particular class, its
default value form might be specified by a different class. In this case :default-initargs is used
to supply a default value for an inherited initialization argument.

The :default-initargs option is used only to provide default values for initialization arguments;
it does not declare a symbol as a valid initialization argument name. Furthermore, the :default-
initargs option is used only to provide default values for initialization arguments when making
an instance.

Programmer Interface Concepts 1–37



The argument to the :default-initargs class option is a list of alternating initialization argu-
ment names and forms. Each form is the default value form for the corresponding initialization
argument. The default value form of an initialization argument is used and evaluated only if that
initialization argument does not appear in the arguments to make-instance and is not defaulted
by a more specific class. The default value form is evaluated in the lexical environment of the
defclass form that supplied it; the resulting value is used as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with defaulted initializa-
tion arguments to produce a defaulted initialization argument list. A defaulted initialization
argument list is a list of alternating initialization argument names and values in which unsupplied
initialization arguments are defaulted and in which the explicitly supplied initialization arguments
appear earlier in the list than the defaulted initialization arguments. Defaulted initialization argu-
ments are ordered according to the order in the class precedence list of the classes that supplied
the default values.

There is a distinction between the purposes of the :default-initargs and the :initform options
with respect to the initialization of slots. The :default-initargs class option provides a mech-
anism for the user to give a default value form for an initialization argument without knowing
whether the initialization argument initializes a slot or is passed to a method. If that initializa-
tion argument is not explicitly supplied in a call to make-instance, the default value form is
used, just as if it had been supplied in the call. In contrast, the :initform slot option provides
a mechanism for the user to give a default initial value form for a slot. An :initform form is
used to initialize a slot only if no initialization argument associated with that slot is given as an
argument to make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments and the order of
evaluation of :initform forms are undefined. If the order of evaluation is important, initialize-
instance or shared-initialize methods should be used instead.

Rules for Initialization Arguments
The :initarg slot option may be specified more than once for a given slot.

The following rules specify when initialization arguments may be multiply defined:

• A given initialization argument can be used to initialize more than one slot if the same
initialization argument name appears in more than one :initarg slot option.

• A given initialization argument name can appear in the lambda-list of more than one initial-
ization method.

• A given initialization argument name can appear both in an :initarg slot option and in the
lambda-list of an initialization method.

If two or more initialization arguments that initialize the same slot are given in the arguments to
make-instance, the leftmost of these initialization arguments in the initialization argument list
supplies the value, even if the initialization arguments have different names.

1–38 Common Lisp Object System Specification



If two or more different initialization arguments that initialize the same slot have default values
and none is given explicitly in the arguments to make-instance, the initialization argument
that appears in a :default-initargs class option in the most specific of the classes supplies the
value. If a single :default-initargs class option specifies two or more initialization arguments
that initialize the same slot and none is given explicitly in the arguments to make-instance, the
leftmost in the :default-initargs class option supplies the value, and the values of the remaining
default value forms are ignored.

Initialization arguments given explicitly in the arguments to make-instance appear to the left
of defaulted initialization arguments. Suppose that the classes C1 and C2 supply the values of
defaulted initialization arguments for different slots, and suppose that C1 is more specific than
C2; then the defaulted initialization argument whose value is supplied by C1 is to the left of the
defaulted initialization argument whose value is supplied by C2 in the defaulted initialization
argument list. If a single :default-initargs class option supplies the values of initialization
arguments for two different slots, the initialization argument whose value is specified farther
to the left in the default-initargs class option appears farther to the left in the defaulted
initialization argument list.

If a slot has both an :initform form and an :initarg slot option, and the initialization argument
is defaulted using :default-initargs or is supplied to make-instance, the captured :initform
form is neither used nor evaluated.

The following is an example of the above rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))

(:default-initargs a 1 b 2))

Defaulted
Form Initialization Argument List Contents of Slot
(make-instance ’r) (a 1 b 2) 1

(make-instance ’r ’a 3) (a 3 b 2) 3

(make-instance ’r ’b 4) (b 4 a 1) 4

(make-instance ’r ’a 1 ’a 2) (a 1 a 2 b 2) 1

Shared-Initialize
The generic function shared-initialize is used to fill the slots of an instance using initialization
arguments and :initform forms when an instance is created, when an instance is re-initialized,
when an instance is updated to conform to a redefined class, and when an instance is updated
to conform to a different class. It uses standard method combination. It takes the following
arguments: the instance to be initialized, a specification of a set of names of slots accessible in

Programmer Interface Concepts 1–39



that instance, and any number of initialization arguments. The arguments after the first two must
form an initialization argument list.

The second argument to shared-initialize may be one of the following:

• It can be list of slot names, which specifies the set of those slot names.

• It can be nil, which specifies the empty set of slot names.

• It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose first parameter special-
izer is the class standard-object. This method behaves as follows on each slot, whether shared
or local:

• If an initialization argument in the initialization argument list specifies a value for that slot,
that value is stored into the slot, even if a value has already been stored in the slot before the
method is run. The affected slots are independent of which slots are indicated by the second
argument to shared-initialize.

• Any slots indicated by the second argument that are still unbound at this point are initialized
according to their :initform forms. For any such slot that has an :initform form, that form
is evaluated in the lexical environment of its defining defclass form and the result is stored
into the slot. For example, if a :before method stores a value in the slot, the :initform form
will not be used to supply a value for the slot. If the second argument specifies a name that
does not correspond to any slots accessible in the instance, the results are unspecified.

• The rules mentioned in the section “Rules for Initialization Arguments” are obeyed.

The generic function shared-initialize is called by the system-supplied primary methods for
reinitialize-instance, update-instance-for-different-class, update-instance-for-redefined-
class, and initialize-instance. Thus, methods can be written for shared-initialize to specify
actions that should be taken in all of these contexts.

Initialize-Instance
The generic function initialize-instance is called by make-instance to initialize a newly
created instance. It uses standard method combination. Methods for initialize-instance can be
defined in order to perform any initialization that cannot be achieved with the simple slot-filling
mechanisms.

During initialization, initialize-instance is invoked after the following actions have been taken:

• The defaulted initialization argument list has been computed by combining the supplied
initialization argument list with any default initialization arguments for the class.

• The validity of the defaulted initialization argument list has been checked. If any of the
initialization arguments has not been declared as valid, an error is signaled.

1–40 Common Lisp Object System Specification



• A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance and the defaulted
initialization arguments. There is a system-supplied primary method for initialize-instance
whose parameter specializer is the class standard-object. This method calls the generic function
shared-initialize to fill in the slots according to the initialization arguments and the :initform
forms for the slots; the generic function shared-initialize is called with the following arguments:
the instance, t, and the defaulted initialization arguments.

Note that initialize-instance provides the defaulted initialization argument list in its call
to shared-initialize, so the first step performed by the system-supplied primary method for
shared-initialize takes into account both the initialization arguments provided in the call to
make-instance and the defaulted initialization argument list.

Methods for initialize-instance can be defined to specify actions to be taken when an instance is
initialized. If only :after methods for initialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not interfere with the default
behavior of initialize-instance.

The Object System provides two functions that are useful in the bodies of initialize-instance
methods. The function slot-boundp returns a boolean value that indicates whether a spec-
ified slot has a value; this provides a mechanism for writing :after methods for initialize-
instance that initialize slots only if they have not already been initialized. The function slot-
makunbound causes the slot to have no value.

Definitions of Make-Instance and Initialize-Instance
The generic function make-instance behaves as if it were defined as follows, except that certain
optimizations are permitted:

(defmethod make-instance ((class standard-class) &rest initargs)

(setq initargs (default-initargs class initargs))

...

(let ((instance (apply #’allocate-instance class initargs)))

(apply #’initialize-instance instance initargs)

instance))

(defmethod make-instance ((class-name symbol) &rest initargs)

(apply #’make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance checks the supplied initialization arguments
to determine whether an initialization argument was supplied that neither filled a slot nor sup-
plied an argument to an applicable method. This check could be implemented using the generic
functions class-prototype, compute-applicable-methods, function-keywords, and class-
slot-initargs. See Chapter 3 for a description of this initialization argument check.

Programmer Interface Concepts 1–41



The generic function initialize-instance behaves as if it were defined as follows, except that
certain optimizations are permitted:

(defmethod initialize-instance ((instance standard-object) &rest initargs)

(apply #’shared-initialize instance t initargs)))

These procedures can be customized at either the Programmer Interface level, the meta-object
level, or both.

Customizing at the Programmer Interface level includes using the :initform, :initarg, and
:default-initargs options to defclass, as well as defining methods for make-instance and
initialize-instance. It is also possible to define methods for shared-initialize, which would be
invoked by the generic functions reinitialize-instance, update-instance-for-redefined-class,
update-instance-for-different-class, and initialize-instance. The meta-object level sup-
ports additional customization by allowing methods to be defined on make-instance, default-
initargs, and allocate-instance. Chapters 2 and 3 document each of these generic functions and
the system-supplied primary methods.

Implementations are permitted to make certain optimizations to initialize-instance and
shared-initialize. The description of shared-initialize in Chapter 2 mentions the possible
optimizations.

Because of optimization, the check for valid initialization arguments might not be implemented
using the generic functions class-prototype, compute-applicable-methods, function-
keywords, and class-slot-initargs. In addition, methods for the generic function default-
initargs, and the system-supplied primary methods for allocate-instance, initialize-instance,
and shared-initialize might not be called on every call to make-instance or might not receive
exactly the arguments that would be expected.

1–42 Common Lisp Object System Specification



Redefining Classes

A class that is an instance of standard-class can be redefined if the new class will also be
an instance of standard-class. Redefining a class modifies the existing class object to reflect
the new class definition; it does not create a new class object for the class. Any method object
created by a :reader, :writer, or :accessor option specified by the old defclass form is removed
from the corresponding generic function. Methods specified by the new defclass form are added.

When the class C is redefined, changes are propagated to its instances and to instances of any of
its subclasses. Updating such an instance occurs at an implementation-dependent time, but no
later than the next time a slot of that instance is read or written. Updating an instance does not
change its identity as defined by the eq function. The updating process may change the slots of
that particular instance, but it does not create a new instance. Whether updating an instance
consumes storage is implementation dependent.

Note that redefining a class may cause slots to be added or deleted. If a class is redefined in a
way that changes the set of local slots accessible in instances, the instances will be updated. It is
implementation dependent whether instances are updated if a class is redefined in a way that does
not change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new class is re-
tained. If such a shared slot was unbound in the old class, it will be unbound in the new class.
Slots that were local in the old class and that are shared in the new class are initialized. Newly
added shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured :initform form for
the slot that was specified in the defclass form for the new class. If there is no :initform form,
the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an instance of the class
is changed, a two-step process of updating the instances of the class takes place. The process
may be explicitly started by invoking the generic function make-instances-obsolete. This two-
step process can happen in other circumstances in some implementations. For example, in some
implementations this two-step process will be triggered if the order of slots in storage is changed.

The first step modifies the structure of the instance by adding new local slots and discarding
local slots that are not defined in the new version of the class. The second step initializes the
newly added local slots and performs any other user-defined actions. These two steps are further
specified in the next two sections.

Modifying the Structure of Instances
The first step modifies the structure of instances of the redefined class to conform to its new
class definition. Local slots specified by the new class definition that are not specified as either
local or shared by the old class are added, and slots not specified as either local or shared by the

Programmer Interface Concepts 1–43



new class definition that are specified as local by the old class are discarded. The names of these
added and discarded slots are passed as arguments to update-instance-for-redefined-class as
described in the next section.

The values of local slots specified by both the new and old classes are retained. If such a local slot
was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new class is
retained. If such a shared slot was unbound, the local slot will be unbound.

Initializing Newly Added Local Slots
The second step initializes the newly added local slots and performs any other user-defined
actions. This step is implemented by the generic function update-instance-for-redefined-
class, which is called after completion of the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four required arguments: the
instance being updated after it has undergone the first step, a list of the names of local slots that
were added, a list of the names of local slots that were discarded, and a property list containing
the slot names and values of slots that were discarded and had values. Included among the
discarded slots are slots that were local in the old class and that are shared in the new class.

The generic function update-instance-for-redefined-class also takes any number of initial-
ization arguments. When it is called by the system to update an instance whose class has been
redefined, no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-redefined-class whose
parameter specializer for its instance argument is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an initialization argument
is supplied that is not declared as valid. (See the section “Declaring the Validity of Initializa-
tion Arguments” for more information.) Then it calls the generic function shared-initialize
with the following arguments: the instance, the list of names of the newly added slots, and the
initialization arguments it received.

Customizing Class Redefinition
Methods for update-instance-for-redefined-class may be defined to specify actions to be
taken when an instance is updated. If only :after methods for update-instance-for-redefined-
class are defined, they will be run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update-instance-for-redefined-class.
Because no initialization arguments are passed to update-instance-for-redefined-class when
it is called by the system, the :initform forms for slots that are filled by :before methods for
update-instance-for-redefined-class will not be evaluated by shared-initialize.

1–44 Common Lisp Object System Specification



Methods for shared-initialize may be defined to customize class redefinition. See the section
“Shared-Initialize” for more information.

Extensions
There are two allowed extensions to class redefinition:

• The Object System may be extended to permit the new class to be an instance of a metaclass
other than the metaclass of the old class.

• The Object System may be extended to support an updating process when either the old or
the new class is an instance of a class other than standard-class that is not a built-in class.

Programmer Interface Concepts 1–45



Changing the Class of an Instance

The function change-class can be used to change the class of an instance from its current
class, Cfrom, to a different class, Cto; it changes the structure of the instance to conform to the
definition of the class Cto.

Note that changing the class of an instance may cause slots to be added or deleted.

When change-class is invoked on an instance, a two-step updating process takes place. The
first step modifies the structure of the instance by adding new local slots and discarding local
slots that are not specified in the new version of the instance. The second step initializes the
newly added local slots and performs any other user-defined actions. These two steps are further
described in the two following sections.

Modifying the Structure of the Instance
In order to make the instance conform to the class Cto, local slots specified by the class Cto that
are not specified by the class Cfrom are added, and local slots not specified by the class Cto that
are specified by the class Cfrom are discarded.

The values of local slots specified by both the class Cto and the class Cfrom are retained. If such a
local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Cfrom and as local in the class Cto are retained.

This first step of the update does not affect the values of any shared slots.

Initializing Newly Added Local Slots
The second step of the update initializes the newly added slots and performs any other user-
defined actions. This step is implemented by the generic function update-instance-for-
different-class. The generic function update-instance-for-different-class is invoked by
change-class after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on two arguments com-
puted by change-class. The first argument passed is a copy of the instance being updated and is
an instance of the class Cfrom; this copy has dynamic extent within the generic function change-
class. The second argument is the instance as updated so far by change-class and is an instance
of the class Cto.

The generic function update-instance-for-different-class also takes any number of initializa-
tion arguments. When it is called by change-class, no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-different-class that
has two parameter specializers, each of which is the class standard-object. First this method

1–46 Common Lisp Object System Specification



checks the validity of initialization arguments and signals an error if an initialization argument
is supplied that is not declared as valid. (See the section “Declaring the Validity of Initialization
Arguments” for more information.) Then it calls the generic function shared-initialize with the
following arguments: the instance, a list of names of the newly added slots, and the initialization
arguments it received.

Customizing the Change of Class of an Instance
Methods for update-instance-for-different-class may be defined to specify actions to be taken
when an instance is updated. If only :after methods for update-instance-for-different-class
are defined, they will be run after the system-supplied primary method for initialization and will
not interfere with the default behavior of update-instance-for-different-class. Because no
initialization arguments are passed to update-instance-for-different-class when it is called
by change-class, the :initform forms for slots that are filled by :before methods for update-
instance-for-different-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition. See the section
“Shared-Initialize” for more information.

Programmer Interface Concepts 1–47



Reinitializing an Instance

The generic function reinitialize-instance may be used to change the values of slots according
to initialization arguments.

The process of reinitialization changes the values of some slots and performs any user-defined
actions. It does not modify the structure of an instance to add or delete slots, and it does not use
any :initform forms to initialize slots.

The generic function reinitialize-instance may be called directly. It takes one required argu-
ment, the instance. It also takes any number of initialization arguments to be used by methods
for reinitialize-instance or for shared-initialize. The arguments after the required instance
must form an initialization argument list.

There is a system-supplied primary method for reinitialize-instance whose parameter spe-
cializer is the class standard-object. First this method checks the validity of initialization
arguments and signals an error if an initialization argument is supplied that is not declared as
valid. (See the section “Declaring the Validity of Initialization Arguments” for more information.)
Then it calls the generic function shared-initialize with the following arguments: the instance,
nil, and the initialization arguments it received.

Customizing Reinitialization
Methods for reinitialize-instance may be defined to specify actions to be taken when an
instance is updated. If only :after methods for reinitialize-instance are defined, they will be
run after the system-supplied primary method for initialization and therefore will not interfere
with the default behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefinition. See the section
“Shared-Initialize” for more information.

1–48 Common Lisp Object System Specification


